
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor Thesis in Computer Science

Multi-Tile Terrain Rendering with
OGL/Equalizer

Andreas Kirsch

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor Thesis in Computer Science

Multi-Tile Terrain Rendering with OGL/Equalizer

Multi-Tile Terrain Rendering mit OGL/Equalizer

Author: Andreas Kirsch
Supervisor: Prof. Dr. Westermann
Advisor: Christian Dick
Date: October 15, 2009

I assure the single handed composition of this bachelor thesis only supported by declared
resources.

Munich, October 15, 2009 Andreas Kirsch

Acknowledgments

This bachelor thesis would not have been possible without my supervisor Prof. Dr.
Westermann and my advisor Christian Dick. They were always there and ready to lend an
ear and answer my questions. I’m also very grateful for the help and plentiful advice of
Dr. Jens Schneider, who always found time for me and my rants about the problems I was
fighting with, and who contributed many ideas and suggestions. His help in editing and
structuring this thesis was invaluable.

I would also like to thank my friends and family for their support and patience. Last but
not least I’m also very lucky to have such friends as my fellow students at the TUM who
found time to read parts of this thesis and provide valuable feedback.

vii

ix

Abstract

Visualization is a very important area of computer science and it has useful applications
in all areas of life. Rendering geographical data in a realistic fashion has been of great
interest in the past and is a well-researched topic. One of the main research problems today
is dealing with huge datasets effectively and in a way that allows for real-time interaction
with them.

Moore’s Law has governed the increase of computing power for decades, but hardware
manufacturers are reaching the physical limits now and the prevalent solution is to rely
on parallelization more heavily instead of hoping for serial performance increases. With
parallelization becoming more and more important, Amdahl’s Law and Gustafson’s Law
are the new indicators of achievable performance increases.

This Bachelor Thesis will discuss the steps necessary to port a terrain rendering engine
from DirectX/Direct3D to OpenGL and set it up for parallelization on clusters using the
Equalizer Parallelization Framework.

I will give an overview of the differences between Direct3D 10 and OpenGL 3.2 and the
conceptual steps necessary to port applications from one API to the other. Useful tools and
concepts for porting applications in general will be presented. The Equalizer Framework
will be introduced briefly and the necessary changes to the application to use it will be
explained. The thesis will conclude with a performance comparison between the original
terrain rendering engine and the ported version and outline some possible further research
topics.

xi

Zusammenfassung

Visualisierung ist ein wichtiges Gebiet der Informatik und hat viele Anwendungen in allen
Bereichen des Lebens. Insbesondere das Darstellen geographischer Daten in einer realistis-
chen Art und Weise ist ein wichtiges und gut erforschtes Thema. Eines der Hauptprobleme
in der Forschung heutzutage ist das effiziente Verarbeiten von sehr großen Datensätzen
um Echtzeit-Interaktion mit jenen zu ermöglichen.

Moores Gesetz hat den Anstieg der Rechenleistung über Jahrzehnte hinweg bestimmt,
aber Hardwareentwickler stoßen inzwischen an die von der Physik gesetzten Grenzen.
Die vorherrschende Lösung ist sich mehr auf Parallelisierung zu verlegen, anstatt auf
serielle Leistungsanstiege zu hoffen. Mit dem Aufstieg der Parallelisierung sind Am-
dahls Gesetz und Gustafsons Gesetz zu den neuen Indikatoren für erreichbare Leis-
tungszuwächse geworden.

Diese Bachelorarbeit stellt die Schritte vor, die notwendig sind um eine Terrain-
Rendering-Engine von DirectX/Direct3D auf OpenGL zu portieren und sie mit Hilfe des
Equalizer Frameworks auf die Parallelisierung in Clustern vorzubereiten.

Ich werde einen Überblick über die Unterschiede zwischen Direct3D 10 und OpenGL
3.2 geben, sowie die grundlegenden Schritte vorstellen um eine Anwendung von einer
API zur anderen zu portieren. Dabei werde ich nützliche Werkzeuge und Konzepte
zum Portieren von Anwendungen im allgemeinen präsentieren. Das Equalizer Frame-
work wird kurz eingeführt und die notwendigen Änderungen an der Anwendung werden
erklärt. Die Arbeit schließt mit einem Vergleich der Leistung zwischen der ursprünglichen
Terrain-Engine und der portieren Version und zeigt einige weitere, mögliche Forschungs-
themen auf.

xiii

Contents

Acknowledgements vii

Abstract xi

Zusammenfassung xiii

Table of Contents xv

1 Introduction 1

2 Direct3D 10 and OpenGL 3.2 3
2.1 A Short History of OpenGL . 3
2.2 A Short History of DirectX and Direct3D . 4
2.3 Graphics Pipeline . 4
2.4 Direct3D 10 API . 6

2.4.1 Device Object . 6
2.4.2 State Objects . 6
2.4.3 Resource Objects . 8
2.4.4 Texture View Objects . 9
2.4.5 Shader Objects . 9
2.4.6 Effect Files . 10

2.5 OpenGL 3.2 API . 11
2.5.1 Object Model . 11
2.5.2 Direct State Access Extension . 15

2.6 Notable Differences between OpenGL and Direct3D 15
2.7 Indexed and Bufferless Drawing . 17

3 Terrain3D Overview 19
3.1 Architecture . 19

3.1.1 Resource Pool . 19
3.1.2 Data Loader . 19
3.1.3 Renderer . 21
3.1.4 Application . 21

3.2 Texture Compression . 21
3.3 Coupling between Terrain3D and DirectX/Direct3D 22

4 OpenGL Port 25
4.1 Overview . 25

4.1.1 Goals . 25

xv

Contents

4.1.2 Concept . 25
4.1.3 Renderer Backend . 26
4.1.4 Effect Files . 27

4.2 Effect Class and Helper Classes . 27
4.3 Effect Files . 32

4.3.1 GLSL Effect File Format . 32
4.3.2 ANTLR Grammar Definition . 35
4.3.3 Compiler Code . 35
4.3.4 StringTemplate Code . 37

4.4 Device Class and Helper Classes . 40
4.4.1 Class Hierarchy . 40
4.4.2 Device Methods . 40

4.5 Additional Changes in Terrain3D . 46
4.5.1 Coordinate System . 46
4.5.2 Indexed and Bufferless Drawing . 46
4.5.3 GLUT Library . 46

5 Equalizer Port 49
5.1 The Equalizer Framework . 49

5.1.1 Rendering Modes . 49
5.1.2 Load Balancers . 50
5.1.3 Configuration Files . 50
5.1.4 API Overview . 52

5.2 Overview of the Porting Process . 56
5.3 Equalizer Application Code . 57

5.3.1 eqPly’s Equalizer Classes . 57
5.3.2 Porting the Application Code . 59

5.4 Changes to the Renderer Backend . 62
5.5 Better Equalizer Support . 64

6 Conclusion 67
6.1 Performance Comparison . 67
6.2 Further Reseach and Development . 68
6.3 Results . 69

Bibliography 71

xvi

1 Introduction

Visualization is a very important area of computer science and it has useful applications in
all areas of life. Modern graphics cards achieve a degree of realism previously not thought
possible. Especially real-time graphics applications are revolutionizing the way people
work in many areas of research and engineering. On the other hand it also revolutionizes
the way people live because personal entertainment has been changing at a vast speed,
too.

One topic useful for both areas is the rendering of geographical data in a realistic fashion.
It has been of great interest in the past and is already a well-researched topic. One of
the main research problems nowadays is dealing with huge datasets effectively and in a
way that allows for real-time interaction with them. The pure size of the datasets already
poses interesting questions about caching strategies and methods to effectively transfer
data between the CPU (central processing unit) and GPU (graphics processing unit).

However, today the question about how to make effective use of parallelization tech-
niques is just as important, and will be of even greater importance tomorrow.

Moore’s Law has characterized the increase of computing power for decades, but now
it is beginning to fail. It states that the number of transistors, and thus the computing
power of a CPU, doubles every two years. But hardware manufacturers are now reaching
the physically possible limits, and in recent years the pace of performance increases has
slowed down. The only possible solution is to rely on parallelization more heavily instead
of hoping for serial performance increases.

Other laws govern the realm of parallel computing: Amdahl’s Law and Gustafson’s Law
are the new indicators that describe the achievable performance increases. Amdahl’s Law
states that, for constant data sizes, the maximum possible performance increase is limited
by the sequential parts of a program. Gustafson’s Law on the other hand argues that with
increasing data sizes a linear speed up is asymptotically reached as the number of parallel
processors reaches infinity.

The Chair for Computer Graphics and Visualization at the Faculty of Computer Sci-
ence of the Technische Universität München have been conducting research both in
the area of terrain visualization and in the area of parallelization in the past years
[SBW06, SW06, BSK+07] and active research is being conducted right now as well
[DSW09, DKW09, Kra09].

1

1 Introduction

The Technische Universität München has an academic partnership with the recently-
founded King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.
KAUST is building a CAVE (Cave Automatic Virtual Environment) system in its research
labs. A CAVE is a virtual reality environment that consists of a room whose walls are
projection screens. Usually head tracking devices and other means are used to increase
the immersion further. The CAVE built by KAUST is driven by a cluster of 24 high-end
workstations that each run 2 state-of-the-art NVIDIA Quadroplex units. Each QuadroPlex
unit contains 4 Quadro GPUs. This makes it a total of 96 GPUs in a cluster that need to be
coordinated to render efficiently.

This Bachelor Thesis discusses the steps necessary to port the terrain rendering engine
Terrain3D from [DSW09] from DirectX/Direct3D to OpenGL, and how to set it up for par-
allelization on clusters using the Equalizer Parallelization Framework.

This new version of the Terrain3D terrain rendering engine will then be used to render
immersive high-quality terrain landscapes in the CAVE in real-time. The CAVE has six
projection walls which can display different images for the left and right eye each frame.
This means that twelve different views have to be rendered every frame.

This thesis is structured in six chapters: The next chapter gives a condensed overview
of the rendering APIs Direct3D 10 and OpenGL 3.2, and explains the differences between
them.

Chapter 3 explains the architecture of Terrain3D and how it makes use of Direct3D 10
and the GPU to render detailed landscapes.

Chapter 4 discusses the conceptual steps necessary for porting applications from one
API to the other and examines the OpenGL port of Terrain3D in detail.

Chapter 5 finally shows how to develop applications for the Equalizer Parallelization
Framework in general and then specifically how the OpenGL version of Terrain3D has to
be changed for Equalizer.

And Chapter 6 concludes this thesis. First it talks about the results and compares the
performance of different versions of Terrain3D, then it describes how the work of this
thesis can be used as starting point for further research.

2

2 Direct3D 10 and OpenGL 3.2

To provide a better background for understanding the problem of porting the terrain en-
gine, an overview of the DirectX 10 API, specifically Direct3D 10, and the OpenGL API
will be given first. Both APIs are very different in their design choices, which originates in
their very different history. For completeness’ sake and because it provides a good starting
point, the following two sections will contain a brief history of both graphics libraries.

Readers who are already familiar with the APIs can skip these sections or just skim over
them and continue with the next chapter. The following text attempts to stay basic and to
explain most concepts, but naturally there is not enough space for an extensive explanation
of everything. A general introduction to graphics and real-time rendering can be found in a
[AMHH08]. The sections about DirectX are based on information available from Microsoft
[MSD] and those about OpenGL are based on the official OpenGL 3.2 specification [SA09].
Other helpful resources for OpenGL are [WLH07] and [BSW+07].

2.1 A Short History of OpenGL

OpenGL was created as an open standard by Silicon Graphics, Inc. (SGI) in 1992. The API
was heavily influenced by SGI’s Iris GL, a proprietary graphics library.

OpenGL is a multi-platform library and supports many different languages. It has a
sophisticated extension system, that allows IHVs (independent hardware vendors) to im-
plement their own extensions to the specifications. This way they can give developers
access to special features of their hardware early on. Because of this, OpenGL developers
should theoretically get access to new hardware features earlier1. The OpenGL ARB (ar-
chitectural review board) can make an extension semi-official by supporting it and later
incorporating it into the specifications.

The OpenGL specification have steadily evolved since the original release while always
remaining compatible with older versions. Only with the release of OpenGL 3.0 in 2008
certain features were marked as deprecated (but are still supported by all IHVs).

One thing to note is that the API of OpenGL is quite old and it had to incorporate many
transitions in the way computer graphics was dealt with. It has seen the advent of multi-

1As a matter of fact the current dominance of DirectX has the IHVs in lock step and extensions are often
released to match the functionality of the next DirectX release.

3

2 Direct3D 10 and OpenGL 3.2

texturing, programmable graphics hardware, buffer objects, off-screen rendering and other
techniques that were probably not expected either when the original API was devised.

Although the number of game engines that use OpenGL has declined over time and
only a minute number of current AAA game engines use OpenGL exclusively, OpenGL is
still very strong in the CAD and design application area, as well as in research. One of the
reasons could be that it is a multi-platform API in contrast to DirectX.

2.2 A Short History of DirectX and Direct3D

The first version of DirectX was released in 1996, and back then it did not contain a 3D
subsystem. Only with the release of DirectX 3, a subsystem called Direct3D was included
for the first time. DirectX was a small player at first, as most companies continued to use
OpenGL and 3dfx’s Glide. Only with the introduction of DirectX 7, DirectX became more
popular. Unlike OpenGL each version of DirectX can offer a totally different interface. Tak-
ing advantage of this, Microsoft listened to the users of DirectX and gradually improved
the API with each version.

Nevertheless, backwards compatibility is still achieved through the use of Microsoft’s
COM (component object model) and different interface classes. Thus one can still get an
interface for Direct3D 3, even though DirectX 10 is installed.

DirectX does not offer an extension system like OpenGL. Instead the different DirectX
versions have very different APIs, as mentioned above, that make use of a fixed set of fea-
tures that graphic drivers have to support. This makes it easier for software developers to
write code that runs well on many different system configurations compared to OpenGL,
where the develops need to support different extensions or cope with the lack of thereof.

Now that the reader is familiar with the background history of both APIs, it is worth
taking a look at the general graphics pipeline used by OpenGL and DirectX before moving
to the code-level design of the APIs.

2.3 Graphics Pipeline

Figure 2.1 shows the pipeline that is used by both Direct3D and OpenGL 3.2. They both
pretty much use the same pipeline—only some terms are different. The real differences
can be found in the actual APIs and in small but important details in the specifications.

As you can see, the pipeline can be divided into seven stages:

Input Assembler The input assembler stage is responsible for reading in data and assem-
bling the primitives2 needed for rendering. The application feeds the data into the

2Primitives can be points, lines, triangles or quadrilaterals.

4

2.3 Graphics Pipeline

Input
Assembler

Vertex
Shader

Geometry
Shader Rasterizer

Pixel/Fragment
Shader

Output
Merger

Stream-Output/
Transform Freedback

GPU Resources: Buffers, Textures, Framebuffers/Rendertargets

Figure 2.1: Graphics pipeline in Direct3D 10 and OpenGL 3.2

input assembler stage by uploading it into buffers. A buffer is an unstructured GPU
resource. Anything can be stored in it and the application must tell the input assem-
bler how to interpret the data inside the buffers.

There are two types of buffers: vertex buffers and index buffers. Vertex buffers con-
tain vertex data. Index buffers store indices into the vertex buffers that determine
in which order the input assembler reads data out of the vertex buffers. If no index
buffer is used, the input assembler reads data out of the vertex buffers sequentially.

It is possible to render without suppling vertex data by only using index buffers, or
even to render without supplying any data at all to the input assembler. See Sec-
tion 2.7 on page 17 for more information about this advanced feature.

Vertex Shader The vertex shader stage is a programmable stage. The application pro-
vides a so-called vertex shader which is used to transform the vertices that enter
the stage. Usually coordinate transformations are applied to orient and move the
geometry, and lighting is simulated to increase realism.

A vertex shader can always only access one vertex and operate on its data. This
allows the stage to be heavily parallelized. In addition to the vertex’s data, a vertex
shader can also access textures and buffers. Textures are containers for structured
data like images. It is possible to create one dimensional, two dimensional or three
dimensional textures3. There also exist more advanced texture types.

Geometry Shader The geometry shader stage is also a programmable stage. Here a ge-
ometry shader is used to operate on the input vertex stream. In contrast to the vertex
shader the geometry shader is operating on a primitive as a whole. Thus it has ac-
cess to the transformed data of all vertices that make up one primitive. It can create

3Texture are in a way like arrays: they have a fixed dimension and the base type has to be set up-front.

5

2 Direct3D 10 and OpenGL 3.2

additional primitives or discard primitives. Even the primitve type can be changed
between input and output stream.

Geometry shaders can be used to tessellate geometry or perform other advanced
operations that cannot be executed in vertex shaders because of their limitations.

The geometry shading stage can additionally access texture and buffer resources like
the vertex shading stage.

Stream-Output/Transform Feedback Direct3D calls this the stream-output stage.
OpenGL calls it the transform feedback stage. It does the same in both though:
it is an optional stage, that allows writing out the primitives, respectively vertices, to
a buffer after they have been transformed by the vertex and geometry shader.

Using a geometry shader and stream-output, it is possible to create new geometry
on the fly and store it for later rendering.

Rasterizer The rasterizer stage takes the primitives and rasterizes them. This means that
the area of each primitive is converted into fragments. Fragments are precursors of
the pixels that will later appear on the screen. To do this the rasterizer takes the ver-
tex data of the the different vertices and interpolates the properties that are needed
later across the primitives, and for each pixel that could be written, a fragment is
generated with a snapshot of the interpolated values.

Pixel/Fragment Shader This stage is called the pixel shader stage in Direct3D and the
fragment shader stage in OpenGL. It is again a programmable stage and the pixel
shader, respectively fragment shader, which is supplied by the application, can oper-
ate on the fragment data and set the output values of the fragment (usually the color
and depth of the fragment).

Like other shaders it can access buffer and texture resources.

Output Merger The output merger stage takes the shaded fragments and decides whether
they should be turned into pixels or not. They have to pass multiple tests before they
are written to the framebuffer.

An example for such a test is the depth test: usually to pass the depth test, the depth
value of a fragment has to be smaller than the one of the pixel currently residing in
the framebuffer (that is the fragment is in front of the current pixel).

The framebuffer can either be the screen or a system buffer that is swapped with
the screen buffer every frame to avoid tearing, or it can be a framebuffer object in
OpenGL or a rendertarget in Direct3D. Framebuffer objects and rendertargets both
reference a GPU resource like a buffer or texture for writing. They wrap the type of

6

2.4 Direct3D 10 API

the resource for the output merger. In the case of OpenGL, framebuffer objects do
not only identify one output resource but all of them, while in Direct3D multiple ren-
dertargets can be set at the same time and each only identifies one output resource.

This was a condensed overview of the graphics pipeline. A good and more in-depth
introduction can be found in [AMHH08]. For details about Direct3D 10’s pipeline [MSD]
is the reference source and [SA09] for OpenGL.

2.4 Direct3D 10 API

DirectX overall uses COM and a typical object-oriented API. Direct3D 10 has a straight-
forward class hierarchy:

ID3D10Device

ID3D10GeometryShader

ID3D10VertexShader

ID3D10PixelShader

Shader Interfaces: Views:

ID3D10View

ID3D10DepthStencilView

ID3D10RenderTargetView

ID3D10ShaderResourceView

ID3D10Buffer

ID3D10Texture1D

ID3D10Texture2D

ID3D10Texture3D

ID3D10Resource

Resources:

ID3D10SamplerState

ID3D10DepthStencilState

ID3D10BlendState

ID3DRasterizerState

State Objects:

Figure 2.2: Direct3D 10 core and resource classes

2.4.1 Device Object

ID3D10Device is the main interface you use to change the graphics device’s state (using
state objects), create new objects on the device (textures, buffers, shaders, etc.) and render
primitives.

7

2 Direct3D 10 and OpenGL 3.2

Table 2.3: Method prefixes in ID3D10Device
Prefix Stage Example Method Name
GS Geometry Shader GSSetShader
IA Input Assembler IASetPrimitiveTopology
OM Output Merger OMSetRenderTargets
PS Pixel Shader PSSetShader
RS Rasterizer Stage RSSetViewports
SO Stream Output SOSetTargets
VS Vertex Shader VSSetShader

It has 95 methods and many are used to change the state of the pipeline and its different
stages. To make it easier for the programmer to see which pipeline stage a method affects
prefixes are used. See Table 2.3 on the facing page for an overview of all used prefixes.

2.4.2 State Objects

Most of the state changes in Direct3D are wrapped using state objects. State objects
cannot be changed after creation. This allows for more efficient state management
in the driver. There are four state interfaces in Direct3D 10: ID3D10BlendState,
ID3D10DepthStencilState, ID3D10RasterizerState, ID3D10SamplerState.

One usually creates several different state objects at program initialization and later sets
the state of a pipeline stage with one call to the corresponding *SetState method of
ID3D10Device. This reduces the function call overhead for state changes, which has
been an issue with previous versions of DirectX and still is an issue in OpenGL today. See
Section 2.5.2 on page 15 for an extension that mitigates the problem in OpenGL.

The example code in Listing 2.4 on the following page creates a rasterizer state object to
render primitives in wire-frame mode and makes it active.

2.4.3 Resource Objects

Resource objects all inherit from ID3D10Resource and are created using one of
the Create* methods of ID3D10Device. There are four resource interfaces:
ID3D10Texture1D, ID3D10Texture2D, ID3D10Texture3D, ID3D10Buffer.

When a resource is created, so-called bind flags and a usage setting have to be specified
for it. The bind flags specify which pipeline stages the resource can be used with. They
also specify whether it can be used as vertex or index buffer (or both) for rendering. See
Table 2.5 for a list of all flags. The usage setting specifies how it is used: whether it is
immutable, dynamic, or allows read and write operations from the CPU. See Table 2.6 on
the facing page for a list of all possible settings.

8

2.4 Direct3D 10 API

Listing 2.4: State object example

ID3D10RasterizerState * pRasterizerStateWireframe = NULL ;

D3D10 RASTERIZER DESC RSDesc ;
ZeroMemory (&RSDesc , s i z e o f (RSDesc)) ;
RSDesc . FillMode = D3D10 FILL WIREFRAME ;
RSDesc . CullMode = D3D10 CULL BACK ;
RSDesc . FrontCounterClockwise = f a l s e ;
RSDesc . DepthClipEnable = true ; // Clipping
RSDesc . MultisampleEnable = true ;
pd3dDevice−>C r e at e R a s t e r i z e r S t a te (&RSDesc ,

&pRasterizerStateWireframe) ;

pd3dDevice−>RSSetState (pRasterizerStateWireframe) ;

Table 2.5: Bind flags for resources in Direct3D 10 (members of D3D10 BIND FLAG).
Source: MSDN

D3D10 BIND VERTEX BUFFER
D3D10 BIND INDEX BUFFER
D3D10 BIND CONSTANT BUFFER
D3D10 BIND SHADER RESOURCE
D3D10 BIND STREAM OUTPUT
D3D10 BIND RENDER TARGET
D3D10 BIND DEPTH STENCIL

Table 2.6: Usage flags for resources in Direct3D 10 (members of D3D10 USAGE).
Source: MSDN

Setting Description
D3D10 USAGE DEFAULT GPU has read and write access
D3D10 USAGE IMMUTABLE Read-only after initialization
D3D10 USAGE DYNAMIC GPU has read and write access, CPU is write-only
D3D10 USAGE STAGING Only used for moving data between the CPU and GPU

9

2 Direct3D 10 and OpenGL 3.2

Listing 2.7: D3D10 TEX2D SRV definition from MSDN

typedef s t r u c t D3D10 TEX2D SRV {
UINT MostDetailedMip ;
UINT MipLevels ;

} D3D10 TEX2D SRV ;

ID3D10Device contains a few methods that deal with resources (other than the
respective Create* methods). The most important ones are: CopyResource and
UpdateSubresource. (They are self-explaining.)

Buffer objects are containers for data that is stored in GPU memory. DirectX doesn’t care
about their internal structure. They are often used to store vertex and index data. Texture
objects on the other hand are structured and the programmer has to tell Direct3D what
color format is used. [AMHH08] contains a very good introduction to these topics.

A texture object cannot be bound to a stage directly, instead a texture view object has to
be created for the texture.

2.4.4 Texture View Objects

Texture view objects can be bound to a stage using methods of ID3D10Device such as
OMSetRenderTargets and PSSetShaderResources.

There are three texture view interfaces: ID3D10DepthStencilView,
ID3D10RenderTargetView and ID3D10ShaderResourceView . The first two
views are used to bind a texture as output to the output merger stage. The last one is used
to bind it to shaders. What is the advantage of having additional objects for this?

For example, when a shader resource view is created, you specify two mipmap param-
eters (see Listing 2.7): the maximum mipmap level and the base mipmap level. As this is
a per view setting, one texture can have multiple pre-created views which can be used in
different shaders without any state changes in-between.

This sounds trivial, but in OpenGL, for example, this is state that is stored per texture,
because OpenGL does not have views. Thus you would have to change the texture state
multiple times when switching between shaders, which is more expensive.

2.4.5 Shader Objects

There are 3 shader interfaces: ID3D10GeometryShader, ID3D10PixelShader

and ID3D10VertexShader. ID3DDevice offers the CreatePixelShader,

10

2.4 Direct3D 10 API

CreateVertexShader and CreateGeometryShader methods to create shader
objects.

They take the compiled shader bytecode as parameter, which can be generated from
HLSL shader code by using the D3D10CompileShader global function or a variant of it.

High Level Shading Language

HLSL stands for High Level Shading Language and is the C-like shader language used
by DirectX. In Direct3D 10 HLSL borrows some concepts from C++. While it does not
support the definition of new classes or templates, most datatypes can be accessed using
an object-oriented and template-like syntax:

Listing 2.8: Examples of HLSL’s C++-like syntax

// templated matrix type
matrix<f l o a t , 4 , 4> mWorldView ;

// t e x t u r e a c c e s s example
Texture2D<f l o a t 4> txTerrain ;
[. . .]
f l o a t 4 r e s u l t = txTerrain . Sample (samplerState , input . vTexCoord) ;

// geometry shader
[maxvertexcount (3)]
void GSDecompressStripP1 (point VSDecompressStripP1Out input [1] ,

inout PointStream<GSDecompressStripP1Out> pointStream) {
GSDecompressStripP1Out r e s u l t ;

r e s u l t . v e r t i c e s [0] . r = input [0] . v e r t i c e s [0] . g ; // v2
[. . .]
pointStream . Append (r e s u l t) ;

2.4.6 Effect Files

Direct3D offers a powerful file format to store shaders, and organize them in a natural
way: the effect file format. Effect files commonly use the extension .fx.

The philosophy behind it is that shaders are used to render effects. Usually there are
different ways to render an effect depending on the capabilities of the hardware or the

11

2 Direct3D 10 and OpenGL 3.2

desired quality. Thus an effect can comprise several different techniques to render the
effect. Each technique can require multiple rendering passes with different shaders.

.fx File Format

Employing this idea, an effect file can contain several different techniques and each tech-
nique is made up of one or more passes. A pass is described by the shader functions that
should be used for pixel, vertex and geometry shading, and the state the device should be
set to before rendering. Therefore an effect file contains HLSL code, state block definitions
and a number of technique and pass declarations. See Listing 2.9 on the following page
for a simple effect file.

API

There are four main interfaces that deal with effect files in Direct3D 10: ID3D10Effect,
ID3D10EffectTechnique, ID3D10EffectPass, ID3D10EffectVariable. See Fig-
ure 2.10 on page 13 for a class diagram of the most important effect file classes. Ef-
fect files can be compiled into a binary format to speed up loading using functions like
D3DX10CompileFromFile.

An effect is loaded by calling D3DX10CreateEffectFromFile or a similar func-
tion. The functions return an ID3D10Effect object. The ID3D10Effect objects
offer methods that query the number of available techniques, return a certain tech-
nique as ID3D10EffectTechnique object or a certain global shader variable as
ID3D10EffectVariable.
ID3D10EffectTechnique itself allows one to query the passes the technique contains

and retrieve an ID3D10EffectPass object for a pass. ID3D10EffectPass has only one
important method: Apply. It applies all settings for the pass from the effect file to the
device: it sets the state as defined in the state block used by the pass, and activates the
shaders. After calling Apply, primitives are rendered as specified in the pass declaration.
ID3D10EffectVariable can be used to obtain interfaces for shader variables such as

ID3D10EffectMatrixVariable or ID3D10EffectVectorVariable which have set
methods to change the value of shader variables.

2.5 OpenGL 3.2 API

2.5.1 Object Model

OpenGL was devised in an era when C was commonly used, and it only supports a C
interface. It still has the notion of different objects but it uses a context-based design to

12

2.5 OpenGL 3.2 API

Listing 2.9: tileRenderingBB.fx (adapted)

DepthStencilState EnableDepth {
DepthEnable = FALSE ;

} ;

c b u f f e r cbEnvironment {
matrix mWorldView ;
matrix mProjection ;
f l o a t 4 vColorBB ;

}

s t r u c t VSInBB {
f l o a t 4 vPos : POSITION ;

} ;

s t r u c t PSInBB {
f l o a t 4 vPos : SV Posi t ion ;

} ;

PSInBB VSBB(VSInBB input) {
PSInBB output = (PSInBB) 0 ;
output . vPos = mul (input . vPos , mWorldView) ;
output . vPos = mul (output . vPos , mProjection) ;
re turn output ;

}

f l o a t 4 PSBB () : SV Target {
re turn vColorBB ;

}

technique10 RenderBB {
pass P0 {

SetVertexShader (CompileShader (vs 4 0 , VSBB ())) ;
SetGeometryShader (NULL) ;
SetPixelShader (CompileShader (ps 4 0 , PSBB ())) ;

SetDepthStencilState (EnableDepth , 0) ;
}

}

13

2 Direct3D 10 and OpenGL 3.2

M
et
ho
ds

ID
3D

10
Ef
fe
ct

Cl
as
s

G
et
Te
ch
ni
qu
eB
yI
nd
ex

G
et
Te
ch
ni
qu
eB
yN
am

e
G
et
Va
ria
bl
eB
yI
nd
ex

G
et
Va
ria
bl
eB
yN
am

e
G
et
Va
ria
bl
eB
yS
em

an
tic

M
et
ho
ds

ID
3D

10
Ef
fe
ct
Pa
ss

Cl
as
s

Ap
pl
y

M
et
ho
ds

ID
3D

10
Ef
fe
ct
V
ar
ia
bl
e

Cl
as
s

As
Sc
al
ar

As
Ve
ct
or

As
M
at
rix

As
Sh
ad
er
Re
so
ur
ce

M
et
ho
ds

ID
3D

10
Ef
fe
ct
Te
ch
ni
qu
e

Cl
as
s

G
et
Pa
ss
By
In
de
x

G
et
Pa
ss
By
N
am

e

M
et
ho
ds

ID
3D

10
Ef
fe
ct
Sh
ad
er
R
es
ou
rc
eV
ar
ia
bl
e

Cl
as
s

G
et
Re
so
ur
ce

Se
tR
es
ou
rc
e

M
et
ho
ds

ID
3D

10
Ef
fe
ct
Sc
al
ar
V
ar
ia
bl
e

Cl
as
s

G
et
Fl
oa
t

G
et
In
t

G
et
Bo
ol

Se
tF
lo
at

Se
tIn
t

Se
tB
oo
l

M
et
ho
ds

ID
3D

10
Ef
fe
ct
M
at
ri
xV
ar
ia
bl
e

Cl
as
s

G
et
M
at
rix

G
et
M
at
rix
Tr
an
sp
os
e

Se
tM
at
rix

Se
tM
at
rix
Tr
an
sp
os
e

M
et
ho
ds

ID
3D

10
Ef
fe
ct
V
ec
to
rV
ar
ia
bl
e

Cl
as
s

G
et
Fl
oa
tV
ec
to
r

G
et
In
tV
ec
to
r

G
et
Bo
ol
Ve
ct
or

Se
tF
lo
at
Ve
ct
or

Se
tIn
tV
ec
to
r

Se
tB
oo
lV
ec
to
r

Fi
gu

re
2.

10
:D

ir
ec

t3
D

10
’s

ef
fe

ct
cl

as
s

hi
er

ar
ch

y
(s

ho
w

in
g

se
le

ct
ed

m
et

ho
ds

)

14

2.5 OpenGL 3.2 API

access them: objects (e.g. textures, vertex buffers and framebuffers) are identified using
unsigned integer handles. You can picture the identifier as being a key into a hash map
containing the pointers to the actual objects—this is probably how the drivers implement
it internally, too. Each object type gets its own map. Thus the same identifier can be used
eg for a texture and a vertex buffer at the same time. To change the state of an object, it
has to bound, that is, made active. For every object type there are different binding points
it can be bound to. Only one object can be bound to one binding point at a time. Many
OpenGL functions have a parameter that specifies the binding point they affect. This adds
a level of indirection to the API, because an object has to be bound to a binding point and
then the binding point is used as target parameter in OpenGL functions that modify the
object’s state.

Example:

GLuint buffer ;
glGenBuffers (1 , &buffer) ;
glBindBuffer (GL ARRAY BUFFER , buffer) ;

glBufferData (GL ARRAY BUFFER , s i z e o f (data) , data ,
GL STATIC DRAW) ;

glBindBuffer (GL ARRAY BUFFER , 0) ;
glDeleteBuffers (1 , &buffer) ;

The example creates a new buffer object, binds it to the GL ARRAY BUFFER binding point
and uploads data to the buffer object through the binding point. Afterwards it unbinds
the object by binding the default 0 object, and deletes it.

The paradigm described above is used for creating and managing vertex buffer objects,
framebuffers and textures. The general management functions are (whereas Type can be
either Buffer, Framebuffer or Texture):

void glGenTypes (GLuint count , GLuint * handles) ;
void glDeleteTypes (GLuint count , GLuint * handles) ;

GLbool g l I s Type (GLuint handle) ;

void glBindType (GLenum target , GLuint handle) ;

15

2 Direct3D 10 and OpenGL 3.2

target is the parameter that specifies the binding point. For textures there
are several binding points: one for each possible texture type (1D, 2D, 3D,
etc). Buffer objects also have different binding points: GL ARRAY BUFFER is
used for vertex buffers, GL ELEMENT ARRAY BUFFER is used for index buffers, and
GL TRANSFORM FEEDBACK BUFFER is used as target buffer for the transform feedback
stage. See [SA09] for more binding points. In subsequent rendering commands the cur-
rently bound objects are used.

A notable exception from this paradigm is the creation of shader and shader program
objects, which uses a different style:

GLuint glCreateProgram (void) ;
void glDeleteProgram (GLuint programHandle) ;

GLuint glCreateShader (GLenum type) ;
void glDeleteShader (GLuint shaderHandle) ;

A Shader is a specific shader: either a vertex, fragment or geometry shader. A fragment
shader is the equivalent of a pixel shader in Direct3D4. A Program links several of these
shaders together. It can be bound to the programmable pipeline, while a single shader
cannot be activated separately from a program5.

2.5.2 Direct State Access Extension

As mentioned above, if you want to modify an object, you have to bind it to a binding
point. This, of course, changes a binding point which might have been used for a different
object and might be required for subsequent rendering calls. This places an additional
burden on programmers, because they have to keep track of bound objects and binding
points, and must ensure that the old state is restored, if necessary, after modifying an
binding point.

Especially for third-party libraries, this can cause a performance penalty. They cannot
cache state locally and instead need to use OpenGL’s state query functions.

To address this problem and to allow for a tighter coupling between the object to be
modified and the calls that modify it, an OpenGL extension has been introduced in late
2007. It adds an additional parameter to many OpenGL functions to specify the target

4Fragment shader is actually a better name, because these shaders work with fragments. Pixels are usually
elements of the framebuffer, whereas the output of the shaders may not pass the depth test or one of the
other tests and thus not become a pixel after all.

5The recent EXT separate shader objects extension adds support for binding shaders directly.

16

2.6 Notable Differences between OpenGL and Direct3D

object directly. The extension is called EXT DIRECT STATE ACCESS [DSA]. The following
two listings show how this extension reduces code bloat:

/* code t h a t uploads data to a b u f f e r (without using the
extens ion) */

// backup the s t a t e of the binding point
GLuint oldBuffer ;
glGetIntegerv (GL ARRAY BUFFER BINDING , &oldBuffer) ;

// upload data
glBindBuffer (GL ARRAY BUFFER , buffer) ;
glBufferSubData (GL ARRAY BUFFER , offse t , size , data) ;

// r e s t o r e the old s t a t e
glBindBuffer (GL ARRAY BUFFER , oldBuffer) ;

/* vers ion t h a t uses the extens ion */
glNamedBufferSubDataEXT (buffer , offse t , size , data) ;

This was a very brief overview of OpenGL. In contrast to DirectX, which does not have
real specifications, specifications for OpenGL are available und very comprehensive.

2.6 Notable Differences between OpenGL and Direct3D

There are a few fine differences between the two APIs that are worth remembering:

Coordinate System Direct3D uses a left-handed coordinate system, while OpenGL uses a
right-handed coordinate system. A left-handed coordinate system can be transformed
into a right-handed one and vice-versa by flipping the z-axis. See Figure 2.11.

Origin of Window Coordinates OpenGL assumes that (0, 0) is the lower-left corner of
the window, while Direct3D assumes it is the upper-left corner.

Provoking Vertex Direct3D assumes that the first vertex of a primitive is the provoking
vertex, while in OpenGL it is by default6 the last vertex of a primitive. The provoking
vertex is the vertex that supplies the values for the flat-shaded attributes of a primitive.

6OpenGL 3.2 introduces the function ProvokingVertex, which allows you to change this setting

17

2 Direct3D 10 and OpenGL 3.2

x

z

y

(a) LHS

x

z

y

(b) RHS

Figure 2.11: Left-handed vs right-handed coordinate system

Flat-shaded attributes are attributes that are not interpolated between the different
vertices.

Bind Flags Objects in OpenGL do not have any bind flags.

Usage Flags Textures in OpenGL do not have a usage setting.

Matrix Storage Direct3D and HLSL use row-major order for matrices. OpenGL and GLSL
use column-major order for matrices. In row-major order a matrix is stored column by
column in memory, thus if it were accessed as two-dimensional array in C, the first,
major, dimension would specifiy the row. In column-major order a matrix is stored
row by row in memory. The same order is used when initializing matrices in HLSL
and GLSL, so you have to pay attention to switch between the two when porting
code. For example, this matrix �

1 2 3

4 5 6

7 8 9

�

would be specified in HLSL as follows:

int3x3 matrix = {
1 , 2 , 3 ,
4 , 5 , 6 ,
7 , 8 , 9

18

2.7 Indexed and Bufferless Drawing

} ;

while in GLSL the code would look like this:

mat3 matrix = {
1 , 4 , 7 ,
2 , 5 , 8 ,
3 , 6 , 9

} ;

2.7 Indexed and Bufferless Drawing

In Direct3D 10 it is possible to render geometry without specifying a vertex buffer. This is
is possible because Direct3D always supplies the vertex and geometry shader with three
implicit inputs: SV VertexID, SV PrimitiveID and SV InstanceID. SV VertexID is
the index of the current vertex in the vertex buffer. If no index buffer is used, this value is
incremented with each processed vertex. On the other hand if an index buffer is used, the
value corresponds to the index of the vertex that is currently processed.
SV PrimitiveID is incremented with each primitive that enters the vertex shader

stage. For example for first three vertices of a triangle list, SV PrimitiveID is 0, for
the next three it is 1, and so on.
SV InstanceID is used for instanced drawing: the same geometry is drawn multiple

times and SV InstanceID is incremented each time.
By using these input values it is possible to create vertices and geometry without vertex

buffers. Indexed drawing refers to storing all the needed in the index buffer and reading
SV VertexID to access it. Indices can be 8-bit, 16-bit or 32-bit integer values. Bit-shifting
and -masking operators are available in HLSL, too. One way to use indexed drawing for
rendering is to pack vertex data into the indices and unpack it in the shader.

Bufferless drawing refers to rendering with neither index nor vertex buffers. This can
be useful for rendering data that can be generated from the consecutively increasing
SV VertexID and SV PrimitiveID values. Bufferless drawing can be used to render
procedural primitives, or to store the vertex data directly in the shader instead of in a ver-
tex buffer and index it manually. The latter is often used to draw a single triangle that
covers the entire screen during post-processing passes.

19

3 Terrain3D Overview

Since this thesis revolves around Terrain3D (previously described in [DSW09]), you should
become familiar with the architecture of the project and its different subsystems, and get
to know how the different subsystems use the GPU. The following sections describe Ter-
rain3D before the port to OpenGL and Equalizer.

3.1 Architecture

System Libraries

Direct3D

D
X
U
T

Terrain Engine

Resource Pool

Data Loader

Terrain Renderer

Application

User
Interface

Recorder

C
a
m
e
r
a

Figure 3.1: Overview of Terrain3D’s different modules and interaction with libraries

Terrain3D can roughly be divided into two parts: terrain-specific code like the resource
pool, the data loader and the terrain renderer on the one hand and on the other hand the
application code which consists of the user interface and windowing system code. The
windowing system code uses DXUT1 (DirectX Utility Library). See Figure 3.1.

3.1.1 Resource Pool

The resource pool manages the texture and vertex buffer resources of the terrain. It tries
to reuse device resources in order to avoid creating new resources after initialization. For
this it uses reference counting to keep track of resource usage, and treats the resources like
a cache. Loaded resources are evicted using the least-recently-used principle.

It allocates and manages GPU resources such as textures and vertex buffers.
1DirectX’s analog to GLUT

21

3 Terrain3D Overview

Figure 3.2: Example for a closed triangle path of a terrain tile (taken from [DSW09])

3.1.2 Data Loader

The data loader loads geometry and texture data from the hard disk on demand.
The terrain is stored in a tiled quadtree. To increase data throughput 4 × 4 tiles are

bundled in one page.
New pages are read from disk when needed. More specifically the data loader prefetches

the data in a mostly view-direction agnostic way2: it computes a prefetch radius for each
LOD (level-of-detail) level depending on the current screen resolution and field of view,
and loads the relevant pages inside these radii.

Geometry data and texture data is stored in compressed form. The geometry data of
each tile is stored as a compressed closed-path triangle strip, which allows for very space-
efficient encoding. See Figure 3.2 for an example. There are three different ways in Ter-
rain3D to decompress the data:

• decompressing the data on the CPU;

• decompressing the data on the GPU with a single combined vertex and geometry
shader pass, which Direct3D’s stream-out stage to store the result in a vertex buffer;

• decompressing the data on the GPU using multiple vertex and fragment shader
passes, which uses texture ping-ponging3, and a final geometry shader pass with
Direct3D’s stream-out stage to store the result in a vertex buffer.

2Tiles in the center of the screen have priority though
3Assuming two textures A and B are used, then in the first pass A is the render target. In the second pass B

becomes the render target and A is the input texture. In the third pass A becomes the render target and B
is the input texture, and so on.

22

3.2 Texture Compression

See [DSW09] for a detailed explanation and analysis.
The texture data can be compressed in three different ways:

• using DXT1/BC1 compression,

• using DXT1/BC1 compression and a clever mipmap extraction scheme to reduce
redundant data, or

• using Vector Quantizer compression.

This will be discussed in more detail in Section 3.2.

3.1.3 Renderer

The renderer is responsible for rendering the terrain. It uses frustum culling to determine
the set of visible tiles and renders them using a single pass.

To increase vertex data throughput, one vertex is encoded in 32 bits: 10 bits each for the
x and y component and 12 bits for the z component . Compared to supplying three floats
per vertex, this saves 8 bytes per vertex – that is, three times as many vertices can be sent
to the GPU. This is an important gain in a bandwidth limited application like Terrain3D.

The renderer in the Direct3D 10 version also uses indexed drawing to speed up renderin
(see Section 2.7 on page 17).

3.1.4 Application

The Application loads the configuration files, initializes the specialized modules described
above and processes user events. It supports keyboard as well as mouse and joystick
input and provides a Camera class that controls the viewer position and direction. The
Recorder class adds the ability to record flights over the terrain to a file and play them
back later. This feature is useful for demos and benchmarks.

3.2 Texture Compression

In Section 3.1 on page 19 three different texture decompression modes were presented. In
this section we will take a closer look at them:

DXT1/BC1 textures DXT1/BC1 texture compression is used which has a compression ra-
tio of 50%. Each tile contains a full mipmap chain.

Shared DXT1/BC1 textures As can been seen in ..., tile 0 covers the area of tiles 1, 2, 3 and
4. Likewise tile 1 covers the area of tiles 5, 6, 7, 8. Every tile uses a texture with the

23

3 Terrain3D Overview

Figure 3.3: Tile tree of depth 3, shown along the path to tile 5 (the shared mipmap chain is
marked in red)

same resolution. Only tile 0 stores an explicit mipmap chain. The other tiles extract
their mipmap levels from their parent tiles.

For example, tile 5 uses the lower-right quadrant of tile 1’s texture as mipmap level
1 and the lower-right octant of tile 0 as mipmap level 2. The remaining mipmap
levels are extracted from the mipmap levels of tile 0. Figure 3.3 on the following
page visualizes this example.

Using this technique only about three quarters of the texture data of the non-shared
DXT1/BC1 texture method need be stored on disk 4.

Vector Quantizer The Vector Quantizer has a bitrate between 1.5 and 3 bits per texel.
An uncompressed texture uses 24 bits per texel, thus the Vector Quantizer reaches
compression rates between 16:1 and 8:1, with typical ratios being around 12:1 (at
fixed a bitrate per tile). Although it is superior to DXT1/BC1 texture compression
(both in compression efficacy and compression speed), it has to be fully decoded on
the GPU to ensure correct texture filtering during rendering. It results in a textures
working set that is about six times larger (for any given view) than the one achieved
with DXT1/BC1 compression. Since this is unacceptable for many applications, it
has been deprecated.

4This can be easily deduced by the fact that a texture mipmap chain for a square texture of resolution 2w×2w

requires 4w + 4w−1 + 4w−2 + · · ·+ 40 = 4w+1−1
4

≈ 4
3
· 4w texels. If all tiles except for the coarsest one only

store the full resolution texture, only about 75% of the texels are needed.

24

3.3 Coupling between Terrain3D and DirectX/Direct3D

Table 3.4: Techniques in terrain3d.fx
Technique Number of Passes
RenderBitBlt 4
Sprite 2
RenderFrustum 1

Table 3.5: Techniques in terrain.fx
Technique Number of Passes
Render 2
VQDecode 3
RenderBB 1
MultiPassDecompressGeometry 17
SinglePassDecompressGeometry 1

3.3 Coupling between Terrain3D and DirectX/Direct3D

Terrain3D is a complex project that uses many different features of Direct3D 10. As men-
tioned above every subsystem is coupled to Direct3D 10. D3DX, a Direct3D helper library,
is also used extensively: Terrain3D uses its matrix and vector classes. The application code
uses the DXUT framework to keep the window management code small.

Additionally the project uses two effect files: terrain.fx for the terrain subsystems and
terrain3d.fx for the application code itself. The former contains techniques that the data
loader and renderer use and the latter contains some helper techniques that are used by
the application to display a debug frustum and perform post-processing on the output
frame. See Table 3.4 on the next page and Table 3.5 on the facing page for a list of all
techniques and the number of passes they contain.

Effect file loading and access is wrapped in a generic Effect class and each effect file
has its own specialized class that inherits from this Effect class and sets up member
variables for all uniforms in the effect file. Figure 3.6 on the next page shows the class
diagrams.

25

3 Terrain3D Overview

TerrainEffect

Effect
ClassFieldsm

_pAlphaVariable : ID
3D

10EffectScalarVariable*
m

_pCodeBookSizeVariable : ID
3D

10EffectScalarVariable*
m

_pCodeBookVariable : ID
3D

10EffectShaderResourceVariable*
m

_pfBorderH
eightVariable : ID

3D
10EffectScalarVariable*

m
_pfSaturationVariable : ID

3D
10EffectScalarVariable*

m
_pIndicesVariable : ID

3D
10EffectShaderResourceVariable*

m
_pInputLayoutD

ecom
pressStrip : ID

3D
10InputLayout*

m
_pm

ProjectionVariable : ID
3D

10EffectM
atrixVariable*

m
_pm

W
orldView

Variable : ID
3D

10EffectM
atrixVariable*

m
_pN

um
BitsVariable : ID

3D
10EffectScalarVariable*

m
_pStripD

ataBufferSPVariable : ID
3D

10EffectShaderResourceVariable*
m

_pStripD
ataForm

atVariable : ID
3D

10EffectScalarVariable*
m

_pTechnique : ID
3D

10EffectTechnique*
m

_pTechniqueBB : ID
3D

10EffectTechnique*
m

_pTechniqueD
ecom

pressStrip : ID
3D

10EffectTechnique*
m

_pTechniqueVQ
D

ecode : ID
3D

10EffectTechnique*
m

_pTem
pTextureVariable : ID

3D
10EffectShaderResourceVariable*

m
_pTexturePPVariable : ID

3D
10EffectShaderResourceVariable*

m
_ptxTerrainVariable : ID

3D
10EffectShaderResourceVariable*

m
_pvColorBBVariable : ID

3D
10EffectVectorVariable*

m
_pVertexLayout : ID

3D
10InputLayout*

m
_pVertexLayoutBB : ID

3D
10InputLayout*

m
_pvScaleVariable : ID

3D
10EffectVectorVariable*

m
_pvTexCoordO

ffsetVariable : ID
3D

10EffectVectorVariable*
m

_pvTexCoordSizeVariable : ID
3D

10EffectVectorVariable*

M
ethods

G
etVariables() : H

RESU
LT

TerrainEffect()

Effect
Abstract Class

Fieldsm
_bShow

M
essageBoxes : bool

m
_pD

evice : ID
3D

10D
evice*

m
_pEffect : ID

3D
10Effect*

m
_pInputLayouts : vector<

ID
3D

10InputLayout…
m

_w
strFileN

am
e : w

string

M
ethods

Create() : H
RESU

LT
CreateInputLayout() : H

RESU
LT

Effect()
G

etM
atrixVariable() : H

RESU
LT

G
etPass() : H

RESU
LT

G
etScalarVariable() : H

RESU
LT

G
etShaderResourceVariable() : H

RESU
LT

G
etTechnique() : H

RESU
LT

G
etVariables() : H

RESU
LT

G
etVectorVariable() : H

RESU
LT

SafeRelease() : void

public

Figure
3.6:C

lass
diagram

ofthe
originaleffectclasses

26

4 OpenGL Port

Now that the reader is familiar with the general concepts and specific differences between
OpenGL and Direct3D 10, and also knows the general architecture of Terrain3D, the port-
ing to OpenGL can be discussed.

4.1 Overview

As explained in Section 3.3 on page 22 Terrain3D has some very tight coupling with Di-
rectX. Because of this, porting becomes more difficult, as many areas need be changed and
adapted. Moreover, the various differences, big and small, between Direct3D and OpenGL
make careful planning a necessity.

Simply starting to replace all calls to Direct3D with calls to OpenGL is impossible and
keeping the project in an uncompilable state for a long period of time is not an option.
Debugging would take an unacceptable amount of time as well, because there would be
no way to verify that the changes were correct.

4.1.1 Goals

The following goals were set for the porting phase:

• the code should be compilable and running correctly most of the time,

• the Direct3D version and the OpenGL version should compile from the same code-
base,

• changes to the graphics code should become isolated to a few files instead of being
spread over the whole project,

• the porting phase should be dividable into many small verifiable steps.

All these goals aim to simplify debugging and testing. They make it easier to spot bugs
early on, when they are still identifiable with little effort.

27

4 OpenGL Port

Original Code

Renderer
Backend

Original Code Ported Code
1. 3.

2.

port
to OpenGL

Figure 4.1: The three steps for porting Terrain3D

4.1.2 Concept

The goals above point to a straightforward concept (see also Figure 4.1 on the next page):

1. all Direct3D calls and object pointers are wrapped in a new renderer backend

2. the new renderer backend is ported to OpenGL and tested

3. Terrain3D is linked against the new backend and debugged

The first step can be implemented by gradually moving Direct3D calls to the wrapper with
small code transformations. This means that incremental changes can be used, and these
can be verified easily. This also keeps the project compilable while simplifying the port to
OpenGL in the second step. All in all this makes porting easier and lowers the chance for
bugs.

4.1.3 Renderer Backend

The renderer backend is a set of classes which encapsulates Direct3D objects and calls. It
used to centralize the areas of change for the port to OpenGL later on. There are three
important design requirements:

1. KISS1,

2. renderer backend code and unchanged Direct3D code can coexist in the codebase,
and

3. compiler errors are preferred over runtime errors.

These goals deserve more explanation: it’s important not to write a generic Di-
rect3D/OpenGL wrapper, because that would be a behemoth of a task. Rather only the

1Keep It Simple, Stupid

28

4.1 Overview

subset of Direct3D that is used by Terrain3D is wrapped. This reduces the amount of de-
bugging required and also minimizes the performance penalty as the code can be more
specific and to the point.

During the port it is important that incremental changes are possible. Thus the ren-
derer backend cannot be a black box, but needs to allow access to the Direct3D objects it
is supposed to hide. When everything is ported, these access methods won’t be needed
anymore2.

An advantage of compiler errors versus runtime errors is that they appear earlier and
more reliably, thus reducing the testing required (see [McC04] for an exhaustive treatment
of the benefits). So, for example, instead of using flags to specify the stages a texture can be
bound to, multiple classes can be used. Nonetheless duplicate code can be avoided using
inheritance. This moves some of the usual flag error checking to the compiler and helps
readability, because now it is easy to determine exactly what a texture is used for.

4.1.4 Effect Files

Porting the effect files is a problem. They cannot be wrapped incrementally and all need to
be ported together in the second step. To ease that change and honor the mentioned goals, I
decided to implement a simple effect file format for GLSL programs and the corresponding
compiler. Because this is mostly independent of the other code, it will be examined in
detail first.

As mentioned in Section 3.3 on page 22 Terrain3D originally used two effect files that
contain many different techniques. The main difficulties with this are: the lack of support
for effect files or a similar concept in OpenGL, and the huge amount of HLSL code that
needs to be ported to GLSL.

The latter can be mitigated by separating the terrain.fx effect file into one file per tech-
nique (see Table 3.5 on page 23 for an overview over all techniques). Among the techniques
only few share variables are shared, so only little code has to be duplicated during this
refactoring. However, porting becomes easier, since one effect file at a time can be ported
and tested separately. terrain3d.fx does not have to be ported, because it is only referenced
in the DXUT-specific application code, which is discarded anyway.

Some of the techniques have multiple passes and for each pass one shader program has
to be created and set up. Furthermore, for every shader program all uniform locations
have to be queried and stored, and when a shader variable of an effect is changed, the
uniforms of each program have to be updated3. This can be automated easily while it is
tedious to write all the code above by hand.

2It turns out that it is not worth porting all the code, because some is not shared between the different
versions, so it’s beneficial that that code does not have to be fully wrapped.

3The uniform buffers introduced in OpenGL 3.1 are a major improvement in this area.

29

4 OpenGL Port

The effect compiler is a code generator that transforms a GLSL effect file into a C++
source/header file pair which can be compiled and linked with the project code. The
ANTLR parser generator and the StringTemplate library from Terence Parr were used to
the reduce development time of the compiler.

Before examining the implementation further it makes sense to take a look at the wrap-
per code in Terrain3D and the GLSL effect file format.

4.2 Effect Class and Helper Classes

The Effect class, which resides in the Renderer namespace to avoid collision with un-
wrapped code, wraps access to a few Direct3D effect classes mentioned in Section 2.4.6 on
page 11: ID3D10Effect, ID3D10EffectTechnique and ID3D10EffectPass. Only
one technique per effect is supported, which is not a problem after the refactoring de-
scribed above (where every effect file was split into one file per technique). Each effect file
has one specialized effect class that represents the effect file in the code.

The Direct3D and the OpenGL implementation are quite different internally. The dif-
ferences are hidden in Device4 and specialized effect classes however. In both versions
Effect has the public methods GetNumPasses and SetupPass. The former returns
the number of passes the effect file contains—remember that it always only contains one
technique—and the latter sets up the device for a specific pass. The specialized effect
classes contain member variables that correspond to the shader variables, respectively uni-
forms, of the effect files. Each such member variable has a Set method to change its value.
Figure 4.2 on the facing page shows the class diagrams of both implementations. They will
be explained in the next sections.

Direct3D implementation

In the Direct3D implementation Effect has got an abstract GetVariables method,
which the specialized effect classes implement to initialize the member variables and to
create the input layout used by the effect (if there is one).

The Effect class also defines helper classes for the different shader variable types
which wrap the ID3D10Effect*Variable classes. To reduce the amount of duplicate
code, a multi-line macro is employed. See Listing 4.3 on the next page for its code.

4Device wraps ID3D10Device in the renderer backend, and will be discussed later in Section 4.4 on
page 40.

30

4.2 Effect Class and Helper Classes

Effect
Abstract Class

Fields

m_pInputLayout
m_pTechnique

Methods

Create
Effect
GetNumPasses
GetVariables

SafeRelease
SetupPass

Nested Types

Texture
Class

TextureBuffer
Class

Scalar
Class

Integer
Class

Fields

m_variable

Methods

Integer
Set

Matrix
Class

Vector
Class

(a) Direct3D effect classes

UniformBool1
Class

UniformBool2
Class

UniformBool3
Class

UniformBool4
Class

UniformFloat1
Class

UniformFloat2
Class

UniformFloat3
Class

UniformFloat4
Class

UniformFloatMatrix2
Class

UniformFloatMatrix3
Class

UniformFloatMatrix4
Class

Fields

locations
numPrograms
programs

Methods

isActive
Set
UniformFloatM…

UniformInt1
Class

UniformInt2
Class

UniformInt3
Class

UniformInt4
Class

UniformUInt1
Class

UniformUInt2
Class

UniformUInt3
Class

UniformUInt4
Class

Sampler
Class

Methods

DisableTextureUnit
GetGLTexUnit

SamplerTemplate

Sampler
Template Class

Fields

textureID

Methods

SamplerTemplate
Set
SetupPass

Effect
Abstract Class

Fields

numUsedBindings
numUsedTexUnits

Methods

GetNumPasses

ResetState
SetupBinding

SetupPass

public

(b) OpenGL effect classes

Figure 4.2: Class diagram of Effect and its helper classes (without the device classes)

31

4 OpenGL Port

Listing 4.3: Shader variable helper macro definition (for the Direct3D version)

def ine ShaderVariableClass (name , variableType , valueType ,
valueName , se tExpress ion) \

c l a s s name {\
publ ic : \

void Set (const valueType const valueName) {\
setExpression ;\

}\
\

name (variableType *& var iable) : m variable (var iable)
{}\

\
p r i v a t e :\

variableType *&m variable ; \
}

ShaderVariableClass (Texture ,
ID3D10EffectShaderResourceVariable ,
RenderTargetShaderTexture2D * , texture ,
m variable−>SetResource (texture−>GetShaderResourceView ()
)) ;

ShaderVariableClass (TextureBuffer ,
ID3D10EffectShaderResourceVariable , ShaderBuffer * ,
buffer , m variable−>SetResource (
buffer−>GetShaderResourceView ())) ;

ShaderVariableClass (Scalar , ID3D10EffectScalarVariable ,
f l o a t , value , m variable−>SetFloat (value)) ;

ShaderVariableClass (Integer , ID3D10EffectScalarVariable ,
in t , value , m variable−>SetInt (value)) ;

ShaderVariableClass (Matrix , ID3D10EffectMatrixVariable ,
f l o a t * , matrix , m variable−>SetMatrix ((f l o a t *) matrix)
) ;

ShaderVariableClass (Vector , ID3D10EffectVectorVariable ,
f l o a t * , vector , m variable−>SetFloatVector ((f l o a t *)
vector)) ;

#undef ShaderVariableClass

32

4.3 Effect Files

OpenGL implementation

In the OpenGL implementation Effect has two additional public methods:
SetupBinding and static ResetState. SetupBinding sets up the vertex array
pointers for the input layout used by the effect, and ResetState resets the active shader
program and disables all used vertex pointers and texture units.

The helper classes which wrap access to the uniform variables of an effect are a bit more
complex as OpenGL does not have a class that can simply be wrapped and thus more
state has to be stored in the objects themselves. Each pass in an effect corresponds to one
distinct shader program and every shader program can have a different uniform location
for a specific uniform variable. This information has to be stored in the wrapper objects: a
uniform class keeps an array with the handles of all shader programs it is used in, and an
array with the locations of the uniform variable it represents. To avoid duplicate code and
keep it simple5, several preprocessor macros are used again to declare the various uniform
classes. See Listing 4.4 on page 31 for the main macro and how it is used to define uniform
classes (except for the Sampler ones).

Sampler uniforms are wrapped using two classes: Sampler2D and SamplerBuffer.
They are actually typedefs of the SamplerTemplate template class, which in turn is de-
rived from Sampler.
Sampler provides one public static method: DisableTextureUnit. It is used to dis-

able a texture unit after it has been used by a sampler.
SamplerTemplate implements the Set method and a SetupPass method. The for-

mer is required for the code to be compatible with the Direct3D version. The latter is used
by the GLSL effect file code to bind a sampler in OpenGL.

The classes described in this section are used by the GLSL effect compiler extensively.
The next section looks at the effect file format and introduces the concepts based on a
simple example.

4.3 Effect Files

4.3.1 GLSL Effect File Format

The effect file format only contains the features necessary to port Terrain3D’s effect files.
While it is minimalistic, the grammar itself can easily be extended to support more features
of the HLSL effect file format.

Listing 4.5 shows a very simple GLSL effect. The shader is written against the GLSL
1.20 specs - hence the version 120 line. It defines several uniform variables, and unlike the

5Before, template classes were used which resulted in quite complicated and messy code.

33

4 OpenGL Port

Listing 4.4: Uniform helper macro definition (for the OpenGL version)

def ine UniformClass (className , valueType , uni formSet ter) \
c l a s s className { \
publ ic : \

className (unsigned numPrograms , const GLuint * programs ,
const GLint * l o c a t i o n s) \

: numPrograms (numPrograms) , programs (programs) ,
l o c a t i o n s (l o c a t i o n s) { \

} \
\

void Set (const valueType value) { \
f o r (unsigned i = 0 ; i < numPrograms ; i ++) { \

i f (i sAct ive (i)) { \
GLuint program = programs [i] ; \
GLuint l o c a t i o n = l o c a t i o n s [i] ; \
uniformSetter ; \

} \
} \

} \
\

bool i sAct ive (unsigned pass) { \
re turn l o c a t i o n s [pass] != −1; \

} \
\

p r i v a t e : \
unsigned numPrograms ; \

\
const GLint * l o c a t i o n s ; \
const GLuint * programs ; \

}

def ine UniformSingleClass (className , valueType , s h o r t i e) \
UniformClass (className , valueType ,

glProgramUniform1## s h o r t i e ##EXT(program , locat ion , value
))

def ine UniformVectorClass (className , valueType , s h o r t i e ,
compCount) \

UniformClass (className , valueType * ,
glProgramUniform##compCount## s h o r t i e ##vEXT (program ,
locat ion , 1 , value))

UniformClass (UniformFloatMatrix2 , f l o a t * ,
glProgramUniformMatrix2fvEXT (program , locat ion , 1 , f a l s e ,
value)) ;

// other c l a s s e s . . .

34

4.3 Effect Files

Listing 4.5: tileRenderingBB.gfx (adapted)

vers ion 120

uniform {
// ver tex shader uniforms
mat4x4 mWorldView ;
mat4x4 mProjection ;

// fragment shader uniforms
vec4 vColorBB ;

}

input layout { posi t ion : FLOAT[3] }

pass {
ver tex {

in vec4 posi t ion ;

void main () {
g l P o s i t i o n = mProjection * mWorldView * posi t ion ;

}
}
fragment {

void main () {
gl FragColor = vColorBB ;

}
}

}

HLSL effect file format, the input layout is declared inside the effect file, too. In this case
the input layout maps three floats to the position attribute of the vertex shader. Usually
the input layout is kept separate from the shader programs, because different input layouts
might be used with the same shader, but Terrain3D does not use this. Thus the input layout
specification can be moved into the effect file. One GLSL effect file contains exactly one
technique, which simplifies the format and the compiler. Multiple passes can be defined
using pass { ... } blocks. In the shader above only one pass is defined and the vertex and
fragment shader code is specified in the respective vertex { ... } and fragment { ... }
blocks. To declare a geometry shader a slightly more advanced syntax is used:

geometry(input, output, maxEmitVertices){ glslCode }

35

4 OpenGL Port

input and output specify the input and output primitive type. The accepted values
are simply the OpenGL primitive type constants without the initial GL prefix: POINTS,
TRIANLGES, TRIANGLE STRIP, etc.

To facilitate code reuse between different passes, vertex { ... }, fragment { ... } and
geometry { ... } blocks can be defined outside of pass { ... } blocks. They are included
in-order before the code specified in the pass { ... } blocks. Additionally a shared {...}
block is supported, whose code is included in every shader type.

This can be used together with the C preprocessor to write effect files that are very
similar in structure to the Direct3D ones (compare this to HLSL version in Listing 2.9 on
page 12):

Listing 4.6: tileRenderingBB.gfx with global code blocks and preprocessor macros

def ine SetVertexShader (c a l l E x p r) ver tex { void main () {
c a l l E x p r ; } }

def ine SetFragmentShader (c a l l E x p r) fragment { void main () {
c a l l E x p r ; } }

vers ion 120

uniform {
// ver tex shader uniforms
mat4x4 mWorldView ;
mat4x4 mProjection ;

// fragment shader uniforms
vec4 vColorBB ;

}

input layout { posi t ion : FLOAT[3] }

ver tex {
in vec4 posi t ion ;

void VSBB () {
g l P o s i t i o n = mProjection * mWorldView * posi t ion ;

}
}

36

4.3 Effect Files

fragment {
void PSBB () {

gl FragColor = vColorBB ;
}

}

pass {
SetVertexShader (VSBB) ;
SetFragmentShader (PSBB) ;

}

While this seems pointless for such short shaders, it makes code reuse easier for bigger
ones. Furthermore the structure of the original HLSL shaders can be preserved this way,
which makes comparing GLSL and HLSL code in effect files easier while debugging the
different versions of Terrain3D.

A fragDataName variableName statement can be used to specify the output variable of
the fragment shader in a pass and a feedback variableA, variableB, ... statement can be
used to declare the output variables of a shader that are used in transform feedback mode.

A pass definition can also include state blocks, which specify whether depth testing
and/or stencil testing need to be enabled or disabled for the pass. Multiple state blocks
can be specified, too. Blocks specified later have priority over ones specified earlier. By
default depth testing is enabled and stencil testing is disabled (see also Listing 4.12 on
page 37).

Listing 4.7: Feedback and state block example

[. . .]

pass {
SetVertexShader (VSDecompressStrip ()) ;
SetGeometryShader (POINTS , POINTS , STRIP LENGTH * 3 ,

GSDecompressStrip ()) ;

feedback { v e r t i c e s }
s t a t e {

depthTest : f a l s e
}

}

37

4 OpenGL Port

Because the normal C preprocessor is used, the usual # character to introduce a GLSL
preprocessor command cannot be utilized. Instead $ is used for GLSL preprocessor com-
mands. This can result in confusing code if both preprocessors are used for macros, but it
is needed for GLSL #pragmas and #extensions.

Listing 4.8: $ preprocessor example

shared {
$extension GL EXT gpu shader4 : require

}

See Figure 4.9 on the following page for the full grammar used by the parser.

4.3.2 ANTLR Grammar Definition

The compiler uses the ANTLR parser generator to parse effect files. ANTLR is a powerful
tool that creates recursive-descent parsers. The rules are specified using a BNF-like syntax.
ANTLR can be used to create both parsers and lexers. In the examples that follow, it is
sufficient to know, that lexer rules have all-capitals names, while parser rules do not. For
a good introduction and reference for ANTLR, see [Par07]; [Para] contains lots of good
tutorials, too.

The only real issue that arose during the creation of the effect file grammar was figuring
out how to parse GLSL code blocks. Code blocks should be read in as-is and the grammar
should only care about nested braces, ie the grammar should contain GLSL-specific rules.
[Par07] contains an example of a lexer rule that reads in nested code blocks. The rule also
takes a parameter to decide whether to strip the braces from the text or not. It is shown in
Listing 4.10 on page 37.

The problem with this solution is that the actual grammar also needs to parse single
curly braces for pass, state and uniform definitions (see Listing 4.9 on the following page).
The lexer ANTLR generates, however, always chooses the token type, ie lexer rule, that
matches most text and, if there is a tie, then the one that is defined first wins—see [ANT]
for a detailed description of the lexer’s behavior. Because of this the CODE lexer rule always
wins compared to the single curly brace, even if a single curly brace is expected. The only
way to fix this is to make the CODE lexer rule a parser rule instead. A new problem arises
then: since ~(’{’ |’}’))* is now part of a parser rule, it matches any lexer rule, ie token
type, that is not a curly brace, instead of any character except for curly braces. This means
that any character used in GLSL code and not in the grammar will cause it to fail.

The solution is to add a new lexer rule after all other lexer rules that matches any char-
acter. Because it comes last and only matches one character, all real lexer rules are matched

38

4.3 Effect Files

Listing 4.9: Simplified GLSL effect file grammar (exported from ANTLRWorks)

effectFile
: ('version' versionNumber=NUMBER)?

(
 'shared' commonCode=codeBlock
| 'vertex' vertexCode=codeBlock
| 'fragment' fragmentCode=codeBlock
| 'geometry' geometryCode=codeBlock
| 'uniform' '{' uniformDeclaration* '}'
| /*max one per file*/ 'inputlayout' '{'

(inputDeclaration (',' inputDeclaration)*)?
'}'

)*
passDefinition+

;

uniformDeclaration
: type=ID name=ID ';'
;

inputDeclaration
: name=ID ':' type=ID ('[' size=NUMBER ']')?
;

passDefinition
: 'pass' '{'

(
 /*max one per pass*/ 'vertex' vertexShaderCode=codeBlock
| /*max one per pass*/ 'fragment' fragmentShaderCode=codeBlock
| /*max one per pass*/ 'geometry' '('

inputType=ID ',' outputType=ID ',' maxEmitVertices=parameter
')' geometryShaderCode=codeBlock

| /*max one per pass*/ 'feedback' '{'
(transformFeedbackVarying=ID (',' transformFeedbackVarying=ID)*)?

'}'
| /*max one per pass*/ 'fragDataName' fragDataNameID=ID
| stateDefinition
| ';' /* eat ;s */

)*
'}'

;

stateDefinition
: 'state' '{'

(
 ('depthTest' ':' toggle=bool)
| ('stencilTest' ':' toggle=bool)
)*

 '}'
;

bool
: 'true' | 'false'
;

parameter
: '(' .* ')'
;

codeBlock
: '{' .* '}'
;

39

4 OpenGL Port

Listing 4.10: Lexer rule example that reads in code blocks (Source: [Par07, 108])

fragment
CODE[boolean stripCurlies]

: '{' (CODE[stripCurlies] | ~('{' | '}'))* '}'
{

if (stripCurlies) {
setText(getText().substring(1, getText().length()));

}
}

;

first and thus win, and it is only matched for characters that are not used elsewhere in the
grammar.

4.3.3 Compiler Code

The compiler is written in Java. It uses the ANTLR parser generator6 to parse effect files,
and the StringTemplate library7 to generate C++ code.

The ANTLR grammar parses the effect file and stores its content in several Java classes
(see Figure 4.11 on page 38 for a class diagram):

Binding is the container structure of an input binding specified in inputlayout. It contains
fields for the name, size and type of a binding.

Pass is the container for a pass {...} block. It contains fields to store all data specified in
the grammar.

Pass.State is a static subclass of Pass and contains the state variables. See Listing 4.12
for the default values.

Pass.GeometryShader contains fields for the geometry shader code and shader param-
eters in a geometry(input, output, maxEmitVertices){ ... } statement.

SharedCode stores a global code block or uniform declarations.

Uniform stores the type and name of a uniform variable declared in a uniform { ... }
block.

The classes SimpleGLSLEffectFileLexer and SimpleGLSLEffectFileParser are
generated by ANTLR. The class SimpleGLSLEffectCompiler contains the ’glue’ code

6ANTLR is available for download at http://www.antlr.org
7StringTemplate is available for download at http://www.stringtemplate.org/

40

http://www.antlr.org
http://www.stringtemplate.org/

4.3 Effect Files

Figure
4.11:C

lass
diagram

ofthe
G

LSL
effectcom

piler

41

4 OpenGL Port

Listing 4.12: Pass.State definition

publ ic s t a t i c c l a s s State {
publ ic boolean depthTest = true ;
publ ic boolean s t e n c i l T e s t = f a l s e ;

} ;

that parses the effect file and uses the StringTemplate library to generate the output C++
code.

4.3.4 StringTemplate Code

StringTemplate is another Java library created by Terence Parr, which provides a flexible
way to create text output from input data using string templates. The only documentation
available at the moment can be found at the library’s homepage [Parb]. A string template
is a text string that contains additional tags which are replaced at runtime with data from
various sources. Additionally conditional expressions, templates that take parameters,
and expansion of lists and arrays are supported. The GLSL effect compiler uses all these
features to create the output C++ code from the data classes filled in by the parser.

The string template creates an effect class with the name of the GLSL effect file and the
suffix Gfx. The class inherits from the abstract Effect class, see Figure 4.2 on page 28, and
implements the SetupBinding and SetupPass methods as described in Section 4.2 on
page 27. It stores handles to all shader programs (one per pass) and the uniform locations
for each uniform variable and for each shader program. For each uniform variable a public
member is declared using the wrapper classes described in Section 4.2 on page 27.
SetupBinding sets the vertex attribute pointers for the effect as specified by the

inputlayout { ... } block in the effect file and enables the required vertex attribute arrays.
It also disables vertex attribute arrays that are no longer needed on the other hand.
SetupPass sets the state for the pass as specified in the state {...} blocks (or the de-

fault values) and calls SetupPass for all used samplers. It also disables texture units that
aren’t used anymore.

Both methods use static member variables in Effect to keep track of the number of
used texture units and vertex attribute arrays.

They use a trick to overcome a limitation of the StringTemplate library: although it has
a tag <i0> which returns the index of the current element when looping over a list during
expansion, there is no way to filter the results beforehand. Only conditionals can be used
to prevent output for unused samplers in SetupPass. If <i0> was used for selecting

42

4.4 Device Class and Helper Classes

Listing 4.13: Code excerpt from the decompression effect showing the index workaround

// s e t the t e x t u r e bindings
GLuint texUnit = 0 ;

i f (uniformLocations [0] [7] != −1) {
stripHeadersBuffer . SetupPass (7 , texUnit) ; texUnit ++;

}
i f (uniformLocations [1] [7] != −1) {

str ipDataBuffer . SetupPass (7 , texUnit) ; texUnit ++;
}
i f (uniformLocations [2] [7] != −1) {

texPingPong . SetupPass (7 , texUnit) ; texUnit ++;
}

the texture unit, the used texture unit indices would not be tightly packed, leaving gaps
for uniform variables that are not samplers. This is a problem: if there are more uniform
variables than texture units and the last declared uniform variable is a sampler, the code
would fail to set the texture unit. The only workaround around for this is to define a
variable in the code and use it as an index that is incremented each time a sampler has
been set up. See Listing 4.13 for a small code excerpt showing this trick. It is also used
when the sampler uniforms are initialized.
Create method creates the shader and program objects for each pass, compiles the

shader sources and links them. It also queries all uniform locations and informs the uni-
form and sampler objects.

The fragment output variable is set, and if transform feedback is used, the output vary-
ing variables are also set.

4.4 Device Class and Helper Classes

4.4.1 Class Hierarchy

The renderer backend wraps all calls to Direct3D in terrain-specific code (that is, applica-
tion code, which is not reused in the ported version, is ignored) and is the main area of
change between the Direct3D and OpenGL version. The porting of the effect files and the
respective classes is described in Section 4.1.4 on page 27. Here it suffices to know that
all effects inherit from an abstract Effect class. All classes presented here are part of a
separate Renderer namespace in Terrain3D to avoid collisions with existing code.

See Figure 4.14 on the facing page for an overview of the class hierarchy in the renderer

43

4 OpenGL Port

D
ev
ic
e

Cl
as

s pu
bl

ic ~
D

ev
ic

e
Cr

ea
te

Bu
ffe

r

Cr
ea

te
D

ep
th

St
en

ci
lT

ex
tu

re
Cr

ea
te

Re
nd

er
Ta

rg
et

Sh
ad

er
Te

xt
ur

e

Cr
ea

te
Sh

ad
er

Bu
ffe

r
Cr

ea
te

Sh
ad

er
Te

xt
ur

e

D
ev

ic
e

D
is

ab
le

Tr
an

sf
or

m
Fe

ed
ba

ck
Bu

ffe
r

D
ra

w
Ar

ra
ys

D
ra

w
El

em
en

ts

En
ab

le
Tr

an
sf

or
m

Fe
ed

ba
ck

G
en

er
at

eM
ip

M
ap

s

G
et

D
ev

ic
e

Se
tIn

de
xB

uf
fe

r

Se
tN

oV
er

te
xB

uf
fe

r

Se
tO

ffs
cr

ee
nR

en
de

rT
ar

ge
t

Se
tS

am
pl

er
Se

tu
pS

cr
ee

nP
as

s

Se
tV

er
te

xB
uf

fe
rA

nd
In

pu
tL

ay
ou

t

Se
tV

ie
w

Po
rt

St
rin

gM
ar

ke
r

U
pd

at
eS

ub
bu

ffe
r

U
pd

at
eT

ex
tu

re

U
pl

oa
dD

um
m

yT
ex

tu
re

D
at

aB
C1

U
pl

oa
dD

um
m

yT
ex

tu
re

D
at

aR
G

BA
8

pr
iv

at
e Cr
ea

te
D

3D
10

Bu
ffe

r
Cr

ea
te

D
3D

10
Te

xt
ur

e

Bu
ff
er

Cl
as

s pu
bl

ic ~
Bu

ffe
r

G
et

Bu
ffe

r
G

et
Bu

ffe
rID

pr
ot

ec
te

d

Bu
ffe

r

pr
iv

at
e

Sh
ad
er
Bu
ff
er

Bu
ffe

r
Cl

as
s pu

bl
ic ~

Sh
ad

er
Bu

ffe
r

G
et

Sh
ad

er
Re

so
ur

ce
Vi

ew
G

et
Te

xt
ur

eI
D

pr
ot

ec
te

d

Sh
ad

er
Bu

ffe
r

Te
xt
ur
e2
D

Cl
as

s pu
bl

ic ~
Te

xt
ur

e2
D

G
et

Te
xt

ur
e

G
et

Te
xt

ur
eI

D

pr
ot

ec
te

d

Te
xt

ur
e2

D

Re
nd
er
Ta
rg
et
Sh
ad
er
Te
xt
ur
e2
D

Te
xt

ur
e2

D
Cl

as
s pu

bl
ic ~

Sh
ad

er
Te

xt
ur

e2
D

G
et

Re
nd

er
Ta

rg
et

Vi
ew

G
et

Sh
ad

er
Re

so
ur

ce
Vi

ew

pr
ot

ec
te

d

Sh
ad

er
Te

xt
ur

e2
D

Bi
nd
Fl
ag
s

En
um VE

RT
EX

_B
U

FF
ER

IN
D

EX
_B

U
FF

ER
ST

RE
AM

_O
U

TP
U

T

To
po
lo
gy

En
um PO

IN
TL

IS
T

LI
N

EL
IS

T
TR

IA
N

G
LE

LI
ST

TR
IA

N
G

LE
ST

RI
P

Fo
rm

at
En

um R1
6_

U
IN

T
R3

2_
U

IN
T

R3
2G

32
B3

2A
32

_U
IN

T
R8

G
8B

8A
8_

U
N

O
RM

BC
1_

U
N

O
RM

Re
so
ur
ce
D
at
a

St
ru

ct pu
bl

ic da
ta

pi
tc

h

Fi
gu

re
4.

14
:C

la
ss

di
ag

ra
m

of
D
e
v
i
c
e

an
d

it
s

he
lp

er
cl

as
se

s
(w

it
ho

ut
th

e
ef

fe
ct

cl
as

se
s)

44

4.4 Device Class and Helper Classes

Listing 4.15: Format definition

i f d e f USEDX10
def ine DXGL(a , b) a
e l s e
def ine DXGL(a , b) b
endi f
enum Format {

R16 UINT = DXGL(DXGI FORMAT R16 UINT , GL R16UI) ,
R32 UINT = DXGL(DXGI FORMAT R32 UINT , GL R32UI) ,
R32G32B32A32 UINT = DXGL(DXGI FORMAT R32G32B32A32 UINT ,

GL RGBA32UI) ,
R8G8B8A8 UNORM = DXGL(DXGI FORMAT R8G8B8A8 UNORM, GL RGBA8

) ,
BC1 UNORM = DXGL(DXGI FORMAT BC1 UNORM,

GL COMPRESSED RGBA S3TC DXT1 EXT)
} ;

backend. Device wraps all calls to ID3D10Device. Buffer and ShaderBuffer wrap
ID3D10Buffer pointers. The Shader prefix of ShaderBuffer refers to the bind flags of
the object: objects of this type are always created with D3D10 BIND SHADER RESOURCE

bind flag and have a valid pointer to an ID3D10ShaderResourceView object. Buffer
objects on the other hand do not have such view object and are always created without the
bind flag.
Texture2D and RenderTargetShaderTexture2D wrap ID3D10Texture2D

pointers and and similarly RenderTargetShaderTexture2D is created with the
D3D10 BIND SHADER RESOURCE and D3D10 BIND RENDER TARGET flags.

In the OpenGL version Buffer and ShaderBufferwrap the unsigned integer handles
to buffer and texture objects and cache the size of the buffer. Likewise Texture2D and
RenderTargetShaderTexture2D wrap the unsigned integer handles of texture and
framebuffer objects and cache properties like the format of the texture, and its width and
height.
Format, BindFlags and Topology wrap enumerations that the methods of Device

use. As it is determined at compile time which graphics library is used, the values of
the enumerations map to the values of the respective enumerations in either Direct3D or
OpenGL. See Listing 4.15 on page 42 for the definition of Format. Format also only
enumerates the formats actually used by Terrain3D.

45

4 OpenGL Port

4.4.2 Device Methods

There are two versions of the methods in Device: a Direct3D one, which was written
during the first step of the port (see Figure 4.1 on page 26), and an OpenGL one which
was written afterwards. Actually there are two OpenGL versions: one uses the direct
state access extension described in Section 2.5.2 on page 15 and the other one uses normal
OpenGL functions. The latter is mainly used for debugging Terrain3D with gDEBbuger8.

Preprocessor #ifdefs are used to keep the different versions in the same file. The pre-
processor constant USEDX10 is used to switch between the Direct3D and OpenGL version,
and the preprocessor constant GDEBUGGER is used to disable or enable support for the
direct state access extension.

The method names of Device are inspired by both the Direct3D and OpenGL API. The
methods SetIndexBuffer and SetVertexBufferAndInputLayout are an example
of the former and the draw methods DrawArray and DrawElements of the latter.
SetVertexBufferAndInputLayout is interesting in another aspect, too. It performs

two operations, which are independent in Direct3D: setting the active vertex buffers9 and
setting the input layout. In OpenGL, however, the vertex buffer has to be bound before the
vertex pointers can be set, so the two calls have been merged into one method to ensure
that they are always called in the correct order. See Listing 4.16 on the facing page for the
code.
DrawArrays and DrawElements include the topology as parameter. Direct3D has

a separate IASetPrimitiveTopology method, but OpenGL does not, and again the
operations are merged to keep the OpenGL version simple. See Listing 4.17 on the next
page for the implementation.

Finally there are two methods which are very Terrain3D-specific: SetSampler and
SetupScreenPass.

SetSampler is used to set the minimum LOD level for transitions between different tile
levels. In Direct3D a continuous fade is not possible, because discrete, immutable
sampler state objects have to be used. In OpenGL on the other hand the texture
parameter can simply be changed.

SetupScreenPass sets up the rendering for a screen pass, that is drawing a single triangle
that covers the whole screen/framebuffer. In Direct3D it disables the vertex buffer,
because the shader can use the vertex id to choose the coordinates. But in OpenGL
this is not possible, so a special vertex buffer has to be used. See Listing 4.18 on the
facing page for the implementation of both versions.

8gDEBUGGER is a debugger specifically targeted for debugging OpenGL applications. More information
can be found on http://www.gremedy.com

9Terrain3D always only uses one vertex buffer though, so the function also only sets on vertex buffer

46

http://www.gremedy.com

4.4 Device Class and Helper Classes

Listing 4.16: SetVertexBufferAndInputLayout implementation

void Device : : SetVertexBufferAndInputLayout (Buffer * buffer ,
unsigned s t r ide , const E f f e c t &e f f e c t , unsigned o f f s e t /*=
0*/) {

a s s e r t (buffer != NULL) ;

i f d e f USEDX10
m pDevice−>IASetVertexBuffers (0 , 1 , &buffer−>GetBuffer () ,

&s t r ide , &o f f s e t) ;
m pDevice−>IASetInputLayout (e f f e c t . m pInputLayout) ;

e l s e
glBindBuffer (GL ARRAY BUFFER , buffer−>m bufferID) ;
checkGLError () ;

e f f e c t . SetupBinding (s t r ide , o f f s e t) ;
endi f
}

Listing 4.17: DrawArrays implementation

void Device : : DrawArrays (Topology topology , unsigned count) {
i f d e f USEDX10

m pDevice−>IASetPrimitiveTopology (
(D3D10 PRIMITIVE TOPOLOGY) topology) ;

m pDevice−>Draw (count , 0) ;
e l s e

glDrawArrays (topology , 0 , count) ;
checkGLError () ;

endi f
}

47

4 OpenGL Port

Listing 4.18: SetupScreenPass implementation

i f n d e f USEDX10
void Device : : InitScreenPassVertexBuffer () {

s t a t i c f l o a t posi t ions [3] [4] = {
{3 . 0 f , −1.0 f , −0.5 f , 1 . 0 f } ,
{−1.0 f , −1.0 f , −0.5 f , 1 . 0 f } ,
{−1.0 f , 3 . 0 f , −0.5 f , 1 . 0 f }

} ;
i f d e f GDEBUGGER

{
ArrayBufferScope scope (screenPassVertexBufferID) ;
glBufferData (GL ARRAY BUFFER , s i z e o f (posi t ions) ,

&posit ions , GL STATIC DRAW) ;
}

e l s e
glNamedBufferDataEXT (screenPassVertexBufferID , s i z e o f (

posi t ions) , &posit ions , GL STATIC DRAW) ;
endi f
}
endi f

// e i t h e r use ver tex id in the shader in d3d or a simple ver tex
array in ogl (ver tex shader i s j u s t pass−through in t h a t case)

void Device : : SetupScreenPass () {
i f d e f USEDX10

SetNoVertexBuffer () ;
e l s e

glBindBuffer (GL ARRAY BUFFER , screenPassVertexBufferID) ;
glVertexAttr ibPointer (0 , 4 , GL FLOAT , f a l s e , s i z e o f (f l o a t)

* 4 , NULL) ;
endi f
}

48

4.4 Device Class and Helper Classes

The non-direct-state-access version is only used for debugging purposes. It does not
have to be optimized, and because of this the code can simply backup binding points
by querying OpenGL directly, execute the code, and then restore the old state. For this
a few helper classes like ArrayBufferScope are used, which save the OpenGL state
that is going to be changed, set the new state and restore it, when the instance is de-
structed. There are four such helper classes: FrameBufferScope, TextureScope,
TextureBufferScope and ArrayBufferScope.

Three methods are simplified by specifically targeting Terrain3D with the wrapper code:
SetIndexBuffer, DrawElements and EnableTransformFeedback.
SetIndexBuffer and DrawElements10 always assume that the index buffer uses 32-

bit indices. This reduces the complexity because this information is used in the Direct3D
version of SetIndexBuffer and in the OpenGL version of DrawElements. Otherwise
Device would have to store this information in a member variable to use it at the right
time.
EnableTransformFeedback makes use of the fact that Terrain3D only streams out

point primitives. Again an additional member variable would be required otherwise.

There is also one method whose OpenGL version is a lot more complex than the Di-
rect3D version: UpdateTexture. It uploads a texture subresource to a texture resource,
ie a mipmap of a texture’s mipmap chain. The texture data can be uploaded with a certain
pitch value. The pitch value specifies how many bytes lie between two consecutive texture
rows (including the actual data).

However, OpenGL only supports uploading compressed texture data with a pitch that
matches the canonical length of a texture row for the respective format11. Coincidentally
Terrain3D only uses compressed texture data with gaps when using the Shared DXT1/BC1
textures texture decompression mode, which described in Section 3.2 on page 21.

Therefore the OpenGL version of UploadTexture has to check for this case and handle
it separately: it manually copies the texture data row by row into a temporary memory
buffer, which is packed tightly. This tightly packed data can then be uploaded to OpenGL.

Another subtlety arises when uploading compressed textures in the DX1/BC1 format
(which compresses the texture in blocks of 4x4 texels) and the texture width or height is
smaller than 4. In that case a full 4x4 texture block has to be uploaded. The unneeded
texels are ignored by OpenGL.

This concludes the discussion of Device and its helper classes. Even though the major

10DrawElements renders indexed primitives
11that is, there are no gaps between two consecutive rows or put differently: the texture data is packed tightly

between rows

49

4 OpenGL Port

differences between the Direct3D and OpenGL version are concentrated in the renderer
backend, some additional changes are necessary throughout the codebase.

4.5 Additional Changes in Terrain3D

4.5.1 Coordinate System

Direct3D uses a left-handed coordinate system, while OpenGL uses a right-handed coor-
dinate system. Only two things have to be changed to accommodate this: the projection
matrix has to be calculated for a right-handed coordinate system and the z-axis of the view
matrix has to be inverted.

4.5.2 Indexed and Bufferless Drawing

It is generally not possible in OpenGL to render anything without supplying vertex data,
because OpenGL only supplies a meaningful vertex id, when at least one vertex buffer
is bound. There are two places in the Direct3D version of Terrain3D where indexed and
bufferless drawing are used.

The first one is in the tile rendering code for the terrain. It uses indexed drawing to
render the tile more efficiently as described in Chapter 3 on page 19. The OpenGL version
of the code simply binds the buffer as vertex buffer and renders it non-indexed. This
reduces the performance because the post-transform vertex cache cannot be used anymore,
but I have not found a specification conform way to avoid this.

The second one is in the geometry decompressing code that uses multiple shader passes.
It uses bufferless drawing and SV VertexId to process data from two input textures. In
the OpenGL version a vertex buffer that contains the indices, that Direct3D would create
implicitly, is used for rendering.

In current NVIDIA drivers12 it is possible to render outside the valid range of a bound
vertex buffer. This can be used to implement indexed and bufferless drawing: you create
a small dummy vertex buffer and bind it (this enables gl VertexID), then you use either
glDrawArrays for bufferless drawing or glDrawElements for indexed drawing.

According to the specifications the behavior of OpenGL is undefined in this case, but
current NVIDIA drivers accept it and a noticeable performance increase is measured (see
Section 6.1 on page 67). Terrain3D supports a third INDEXED DRAWING preprocessor con-
stant which switches between OpenGL-specification conform rendering and the method
described above.

12October 2009

50

4.5 Additional Changes in Terrain3D

4.5.3 GLUT Library

The Direct3D version uses the DXUT library to deal with operating system calls, window
management and event handling. DXUT only supports DirectX. For the OpenGL version
the GLUT library is being used.

DXUT and GLUT have a very similar API13: both are frameworks, and the application
implements and registers a number of callbacks with either of the libraries. The libraries
take control over the application, process events in their own main loop and only pass
control back to the application code through the callbacks.

13GLUT was created a decade before DXUT was written and the similarity of the names suggests that DXUT
was inspired by GLUT.

51

5 Equalizer Port

5.1 The Equalizer Framework

Equalizer is an advanced parallelization framework for graphics applications that use
OpenGL. It is scalable from a single desktop computer with one graphics card to a cluster
with multiple connected workstations and multiple graphics cards in each. The source
code of an application has to be adapted to work with it, but in return Equalizer manages
distributing rendering tasks, assembling the resulting frames and balancing the load au-
tomatically. It is highly configurable, and different setups can be implemented by only
changing a configuration file. No source code changes are necessary.

Documentation can be found on the library’s homepage [EQh] and in its programming
guide [Gmb].

The following sections are a compact introduction and present the major features of
Equalizer without going too far into the details. First a few terms that Equalizer uses need
to be introduced:

Server Equalizer uses a client-server approach. The server handles a cluster of render
clients and distributes the work among them. It is also responsible for loading the
configuration file.

Application The application connects to a server and is forwarded the configuration
loaded by the server. It reacts to events and controls how the server works.

Node The different render clients are also called nodes in Equalizer.

Pipe GPUs are called pipes. A node can contain several pipes.

Window An operating system window or an off-screen rendering target is called a win-
dow.

Channel A window can be divided into several channels which can each render into a
different part of it.

Compound A compound is a logical grouping of channels that is used to distribute ren-
dering tasks among them.

53

5 Equalizer Port

Equalizer’s class hierarchy also reflects this structure and uses the same names for these
entities.

5.1.1 Rendering Modes

Equalizer supports different compound types. They determine the way the rendering load
is distributed on the different nodes.

2D/Sort-First Compounds The view is split into several rectangular tiles. Each channel
assigned to the compound renders one tile and the results are assembled to produce
the final image.

DB/Sort-Last Compounds The scene is split into several parts, eg based on distance to
the viewer. Each channel of the compound renders a different part of scene. The parts
are then merged back using their depth data to determine the final image. Because
this is done after rendering, overdraw and network load are higher compared to
sort-first decomposition.

Stereo[scopic] Compounds The scene is rendered once for the left and the right eye.
The result is then combined in anaglyphic mode, quad-buffered stereo or auto-stereo
mode.

DPlex Compounds Each channel of the compound renders full frames in a round-robin
scheme, ie time-multiplexed. This adds a latency as high as the number of channels
used, but it is very easy to support in the application code.

Pixel Compounds Instead of separating the view into different rectangular tiles as done
for 2D compounds, the view is split into parts that are interleaved to produce the
final image. Each channal renders a subset of the pixels that form the full view.

5.1.2 Load Balancers

Usually the configuration file determines how the load is distributed on the different chan-
nels, but Equalizer also provides run-time load balancers1:

Load Equalizer The load equalizer changes the width and height of channels to balance
the load of different channels.

1The Equalizer Programming Guide also mentions a Monitor Equalizer, but it is only used to display a
miniature view of multiple channels and has nothing to do with actual load balancing

54

5.1 The Equalizer Framework

View Equalizer The view equalizer dynamically assigns channels to rendering tasks.
Multiple channels from different nodes can be assigned to the compound. It dy-
namically distributes the work on the nodes. If a node is idle, it will help other nodes
to render their view.

Framerate Equalizer The frame rate equalizer tries to smoothen the frame rate over time
to prevent it from oscillating. To accomplish this, it dynamically caps the maximum
frame rate to the average framerate of the channels. The latter can be calculated by
monitoring the actual time spent on rendering in each channel.

DFR Equalizer DFR stands for Dynamic Frame Resolution. The DFR equalizer automati-
cally lowers the resolution of channels to keep the framerate steady.

5.1.3 Configuration Files

Equalizer is configurable through an extensive configuration file format. It uses a con-
figuration file to create its whole runtime structure: the nodes and their IP addresses are
specified in it, as well as the pipes, windows, channels and compounds.

Listing 5.1 on the preceding page shows a simple configuration, which has two nodes.
The first node is an appNode, which is a node that resides in the application process. If
no appNode is specified, the application only handles events and runs the main loop and
does not render anything on its own.

The second node is hosted on a different computer. The connection {...} block specifies
how the server can connect to a node. The pipe {...} blocks tell the server that each node
will access one graphics card. By default Equalizer uses the first installed GPU. This can be
overridden by specifying device #index in the pipe {...} block. This is not shown in this
example. Multiple windows can be declared inside a pipe {...} declaration. In Equalizer
all windows of a pipe share their GL contexts to use the resources of the GPU optimally.
In a window declaration viewport [x y width height] specifies the position and extent of
the window on the screen. A window does not have to be a visible GUI window but can
also be an off-screen buffer (a pbuffer or a framebuffer object).

Inside the windows the channels are declared. Each window has one channel in this
example. As with the pipes above, a window can have several channels. In that case the
channels would partition the window into disjunct areas by specifying viewports for the
windows that do not overlap. This is also not shown in this example.

This was first half of the configuration file. The second half describes the compound
and how the channels are used for rendering. To do this the wall {...} block specifies the
frustum of projection device . A wall projection is a projection against a planar surface, so
three points suffice to establish the projection matrix. The three points are defined using

55

5 Equalizer Port

Listing 5.1: An Equalizer configuration file

s t e r e o rendering on two nodes
server {

conf ig {
appNode {

pipe {
window {

viewport [0 . 2 5 0 . 2 5 . 5 . 5]
channel {

name ” channel− l e f t ”
}

}
}

}
node {

connect ion {
type TCIP
port 123
hostname ” 1 9 2 . 1 6 8 . 0 . 3 5 ”

}
pipe {

window {
viewport [0 . 2 5 0 . 2 5 . 5 . 5]
channel {

name ” channel−r i g h t ”
}

}
}

}
compound {

wall {
b o t t o m l e f t [−.4 −.5 −1]
bot tom right [. 4 −.5 −1]
t o p l e f t [−.4 . 5 −1]

}
compound {

channel ” channel− l e f t ”
eye [LEFT]

}
compound {

channel ” channel−r i g h t ”
eye [RIGHT]

}
}

}
}

56

5.1 The Equalizer Framework

bottom left, bottom right and top left . Their [x y z] values describe the position of the
points in a coordinate system—usually the OpenGL coordinate system (see Figure 2.12b
on page 16), but the application code is free to redefine this.

Two child compounds are declared for the channels. The child compounds automati-
cally use the frustum of their parent. The eye [LEFT] and eye [RIGHT] lines tell Equal-
izer that ”channel−left” should render the left eye and ”channel−right” the right eye. This
is sufficient to make Equalizer render stereoscopic images on two nodes.

There are many more options and the example does not even contain canvases and lay-
outs with offer more ways to manage output devices. [Gmb] contains a useful introduc-
tion to these topics and a detailed explanation of the configuration file format. Equalizer’s
home page also contains a good write-up of the latter, see [Eil].

5.1.4 API Overview

Now that the reader is familiar with the concepts of Equalizer, the code architecture can be
discussed. The primary question is: how do I write an application that uses Equalizer?

Like DXUT and GLUT, Equalizer is a framework. Inside the main event loop the ap-
plication hands over control to the library and only reacts to callbacks. Equalizer is a bit
more flexible though. Instead of implementing a few callbacks, in Equalizer the applica-
tion extends classes and implements their virtual methods. The Factory design pattern (see
[GHJV95]) is used to proffer the adapted classes to the framework by extending the class
NodeFactory to create user-defined objects instead of instances of the default Equalizer
classes.

Equalizer offers many classes which can be extended. Figure 5.2 on page 54 shows the
most important ones. Config represents the loaded configuration file. The only instance
of this class is created in the application process.

By convention the Config instance initializes shared data and registers it with the net-
work layer. It then gives over control to Equalizer and passes the network identifier of the
shared data to it. The different nodes can then query this identifier and map the data over
the network.

Pretty much every object that can be defined in the configuration file has a class that can
be extended by the application programmer. Possible classes thus include: Node, Pipe,
Window and Channel.
Config has callbacks to initialize and finalize itself (init, exit), to start and finish

the current frame (startFrame, finishFrame), and to handle events such as mouse or
keyboard events (handleEvent).
Node and the other classes have similar callbacks with the addition of methods

to handle clearing the screen, rendering the scene and assembling the final image

57

5 Equalizer Port

Figure
5.2:O

verview
ofthe

m
ostim

portantEqualizer
classes

(w
ith

selected
m

ethods)

58

5.1 The Equalizer Framework

(frameClear,frameDraw, frameAssemble). With the exception of the Config class,
callbacks have the form nounVerb. Thus the callbacks to initialize and finalize an object are
called configInit and configFinish for all classes (except Config).

All callbacks provide a meaningful default implementation. This is also true for
NodeFactory. If the default implementation of NodeFactory is used, Equalizer sim-
ply renders a black screen.

Listing 5.3 shows the main function of a simple Equalizer application:

Listing 5.3: Main function and main-loop of a simple Equalizer application (adapted from
Equalizer’s eqPly example)

c l a s s NodeFactory : publ ic eq : : NodeFactory {
publ ic :

v i r t u a l eq : : Config * createConfig (eq : : ServerPtr parent)
{ re turn new eqTerrain3D : : Config (parent) ; }

v i r t u a l eq : : Node* createNode (eq : : Config * parent)
{ re turn new eqTerrain3D : : Node (parent) ; }

v i r t u a l eq : : Pipe * createPipe (eq : : Node* parent)
{ re turn new eqTerrain3D : : Pipe (parent) ; }

v i r t u a l eq : : Channel * createChannel (eq : : Window* parent)
{ re turn new eqTerrain3D : : Channel (parent) ; }

v i r t u a l eq : : Window* createWindow (eq : : Pipe * parent)
{ re turn new eqTerrain3D : : Window(parent) ; }

} ;

i n t main (const i n t argc , char * * argv) {
// 1 . parse arguments
eqTerrain3D : : LocalInitData ini tData ;
ini tData . parseArguments (argc , argv) ;

// 2 . Equal izer i n i t i a l i z a t i o n
NodeFactory nodeFactory ;
i f (! eq : : i n i t (argc , argv , &nodeFactory))
{

re turn EXIT FAILURE ;
}

// 3 . i n i t i a l i z a t i o n of l o c a l c l i e n t node
RefPtr< eq : : Client > c l i e n t = new eq : : Client ;

59

5 Equalizer Port

i f (! c l i e n t−>i n i t L o c a l (argc , argv))
{

eq : : e x i t () ;
re turn EXIT FAILURE ;

}

// 4 . run main−loop
i n t r e t = run (c l i e n t , ini tData) ;

// 5 . cleanup and e x i t
c l i e n t−>e x i t L o c a l () ;
c l i e n t = 0 ;

eq : : e x i t () ;

re turn r e t ;
}

i n t run (RefPtr< eq : : Client > &c l i e n t ,
eqTerrain3D : : LocalInitData &ini tData) {

// 1 . connect to server
eq : : ServerPtr server = new eq : : Server ;
i f (! c l i e n t−>connectServer (server)) {

re turn EXIT FAILURE ;
}

// 2 . choose conf ig
eq : : ConfigParams configParams ;
eqTerrain3D : : Config * config =

s t a t i c c a s t <eqTerrain3D : : Config *>(server−>chooseConfig (
configParams)) ;

i f (! config) {
c l i e n t−>disconnectServer (server) ;
re turn EXIT FAILURE ;

}

// 3 . i n i t conf ig

60

5.1 The Equalizer Framework

config−>se t Ini tData (ini tData) ;
i f (! config−>i n i t ()) {

server−>releaseConfig (config) ;
c l i e n t−>disconnectServer (server) ;
re turn EXIT FAILURE ;

}

// 4 . run main loop
while (config−>isRunning ()) {

config−>startFrame () ;
config−>finishFrame () ;

}
config−>finishAllFrames () ;

// 5 . e x i t conf ig
config−>e x i t () ;

// 6 . cleanup and e x i t
server−>releaseConfig (config) ;
c l i e n t−>disconnectServer (server) ;
server = 0 ;

re turn EXIT SUCCESS ;
}

NodeFactory is the Factory class used to connect the application code to Equalizer.
initData is the shared data mentioned above. It is initialized from command-line argu-

ments or by reading in a configuration file (not shown in this example).
If the process is started as a client node that is controlled by the server, Equalizer takes

over control during the call to initLocal in step 3 and does not return. In the application
process, it connects to a server or creates a local one and then loads the configuration from
it.

Finally the run function is called and the main loop is entered, in which frames are
processed. The loop in this example is very minimalistic but performs all necessary tasks.
finishAllFrames is called after the loop to finish outstanding frames because Equalizer
supports a frame latency on slower nodes if desired and they might need a bit to catch up.

This suffices as short introduction to Equalizer’s API. Interested readers can consult

61

5 Equalizer Port

[Gmb] for more information. Section 5.3 on the facing page also contains additional infor-
mation.

5.2 Overview of the Porting Process

The goal of the Equalizer port was to take the OpenGL port and replace the GLUT appli-
cation code with code that would run within the Equalizer framework. This port requires
some changes to the renderer backend, too, because the rendering code has to be embed-
ded in a channel and has to support some of Equalizer’s features like using frustums from
the configuration file or rendering into off-screen buffers instead of the screen. Many of
Equalizer’s features should be supported, like multiple channels, windows and pipes, and
it should run as efficiently as possible.

The porting can be divided into three steps:

1. port the application code,

2. adapt the renderer code to support rendering to the default Equalizer configuration
(one window with one channel),

3. add support for multiple channels, multiple windows and multiple pipes per node.

The following sections describes each of the three steps in detail.

5.3 Equalizer Application Code

Generally Equalizer applications have similar architectures as described in Section 5.1.4
on page 52. To simplify the porting and to have a running Equalizer version of Terrain3D
quickly, the eqPly example from Equalizer’s source was used as a basis for the port of the
application code.

Using eqPly has one consequence: its source is licensed under the LGPL. Because of this,
Terrain3D’s actual code has to be moved into a static or dynamic library to adhere to the
license, which would otherwise requires the release of the source code on demand.

5.3.1 eqPly’s Equalizer Classes

Everything that does not belong to Equalizer was removed, leaving a skeleton of Equalizer
code that could be filled with the application logic of Terrain3D. Figure 5.4 on the following
page shows a class diagram of the Equalizer-specific classes in eqPly.
View is not needed, so it was removed. The only classes that haven’t been described

yet are EqPly, FrameData, and InitData and LocalInitData. EqPly extends

62

5.3 Equalizer Application Code

Figure
5.4:Equalizer

classes
in

eqPly
(w

ith
selected

m
ethods

and
m

em
bers)

63

5 Equalizer Port

eq::Client2. It really only adds a static run function, which can be moved to the main
function. The class can then be removed and instead eq::Client can be used directly
(see Listing 5.3 on page 53).
InitData is a class that contains static data that every node needs access to.

LocalInitData extends InitData and additionally contains data that is only needed
in the application.

The application initializes an instance of LocalInitData and sends the InitData

part to all nodes. This is done using Equalizer’s network layer, which allows you to regis-
ter objects with the server and get a unique identifier for them. On initialization the server
sends an application-specified value to all nodes. Usually the application sends the iden-
tifier of the LocalInitData object. The nodes then map the object to a local copy using
the identifier and thus get access to the shared static data of the application.
FrameData holds dynamic data that changes between frames. It is registered at initial-

ization as network object and its identifier is stored in InitData. The nodes map it using
the identifier to local copies, which are updated every frame.

To send an object to another node, it is serialized and deserialized by the network layer.
For this an object has to provide serialize and deserialize methods3, which are
used by the network layer to send and receive the object’s data.

5.3.2 Porting the Application Code

Terrain3D usually loads its configuration from two files: a system-specific file and a
terrain-specific one. The former specifies the terrain to load, the allowed screen-space
error and other general settings. The latter contains information about the terrain data like
the path to the actual data, or the depth of the tile tree.
SystemConfiguration and TerrainConfiguration encapsulate this data. Both

become members of InitData in the Equalizer version. SystemConfiguration

is sent over the network using the serialization method described above, but
TerrainConfiguration is not. Instead, after receiving the system configuration, each
node loads the terrain configuration from disk itself. The idea behind this is that different
nodes can use different datasets if necessary. In heterogeneous environments this can be
an easy way to statically balance the load on the nodes.

Porting the code for FrameData is straight-forward, too. Terrain3D has quite a few
settings that can change every frame like, for example, whether it should render the terrain
in wireframe mode or using occlusion culling, or whether it should render frame statistics.
This can be simply moved into FrameData and serialized over the network. Every node

2Equalizer’s API resides inside the eq:: namespace. Because other classes like Node or Pipe share their
name with their base classes, the namespace will always be specified to distinguish between them.

3Again this is a simplification, see chapter 6.3 in the programming guide [Gmb] for more details.

64

5.3 Equalizer Application Code

Listing 5.5: Excerpt of Config::handleEvent

bool Config : : handleEvent (const eq : : ConfigEvent * event)
{

switch (event−>data . type)
{

case eq : : Event : : KEY PRESS :
{

const eq : : KeyEvent& eventData = event−>data . keyPress ;
camera−>KeyboardEvent (eqKeyToCamKey (eventData . key

) , t rue) ;
recorder−>KeyboardEvent ((unsigned char)

eventData . key) ;

frameDataKeyEvent ((unsigned char) eventData . key) ;

redraw = true ;
break ;

}
[. . .]

also needs to access the view matrix and position of the camera. Consequently these values
are also kept in FrameData.

The application code has to be split into code that can be run in the application pro-
cess, and code that has to run on each node. The Camera and the Recorder objects can
obviously reside in the application process. For this camera and recorder member
variables are added to Config. The changed view position and matrix are sent to all
nodes, when FrameData is updated. Config::handleEvent handles mouse and key-
board events. See Listing 5.5 on the following page for an excerpt. Config::startFrame
updates the camera and recorder every frame.

Now only the rendering code is left. Since only one channel and one window have
to be supported at the beginning, all the rendering code can be put into Channel.
Channel::configInit and Config::configExit initialize and release the data
loader and terrain renderer and Channel::frameDraw updates them and renders the
scene. For this it needs the current view direction, view matrix and position. How-
ever, the channel can use a different view direction than the camera because the projec-
tion it was defined with might not point forward. See Figure 5.6 on the next page for
an example. eq::Channel provides two methods that help retrieve the relevant infor-
mation: getHeadTransform and getFrustum. The head transform orients the coor-

65

5 Equalizer Port

(a) The frustum points forward (b) The frustum points to the left

Figure 5.6: Differently oriented frustums

dinate system in such way as to point in the direction of the wall. getFrustum simply
returns the frustum that can be used to compute a normal non-oriented projection ma-
trix. Listing 5.7 on page 61 shows how the final view matrix and direction are computed.
viewToGLTransform is needed because Terrain3D uses a different, left-handed coordinate
system internally: z points upwards, y to the right and x forward. OpenGL uses a normal
right-handed coordinate system: z points backwards, y upwards and x to the right. The
step from left-handedness to right-handedness is the reason why the z-axis is inverted in
the code: viewToGLTransform.scale(1.0, 1.0, −1.0);.

headTransform is the transformation needed to orient the frustum of the channel. It
is applied after viewToGLTransform, so the OpenGL coordinate system can be used
when specifying walls and projections4. After the transformation the negative z axis of
glViewMatrix points into the view direction of the channel. Consequently eq ::Vector4f
viewDirection = −glViewMatrix.get column(2); retrieves it.

This concludes the discussion of the application code in Equalizer. The next section
explains the changed in the renderer backend code.

5.4 Changes to the Renderer Backend

Only few changes are required in the renderer backend. For one Equalizer always sets
the scissor size, too, when the viewport changes, so Device::setViewport has to be
adapted.

The render backend uses glew (GL Extension Wrangler Library) to access OpenGL ex-
tensions and Equalizer does so as well. It uses different compiler options for it though: it
links against it statically and it uses multiple contexts. The latter deserves more explana-
tion: extensions in OGL have to be loaded manually. The function pointers for each new
function that an extension introduces have to be queried at runtime.

4This has the benefit that all example configuration from Equalizer continue to work correctly, too

66

5.4 Changes to the Renderer Backend

Listing 5.7: View matrix and direction computation from Channel::frameDraw

const eq : : Matrix4f &viewMatrix = frameData . getViewMatrix () ;

// the t e r r a i n code uses a d i f f e r e n t coordinate system i n t e r n a l l y
eq : : Matrix4f viewToGLTransform (eq : : Matrix4f : : IDENTITY) ;
viewToGLTransform . r o t a t e y (DEG2RAD(90)) ;
viewToGLTransform . r o t a t e x (DEG2RAD(90)) ;
viewToGLTransform . s c a l e (1 . 0 , 1 . 0 , −1.0) ;

const eq : : Matrix4f &headTransform = getHeadTransform () ;
eq : : Matrix4f glViewMatrix = headTransform * viewToGLTransform *

viewMatrix ;

i f (! frameData . getStaticMesh ())
{

eq : : Vector4f posi t ion = frameData . getPosi t ion () ;
eq : : Vector4f viewDirection = −glViewMatrix . get column (2) ;

getPipe ()−>updateDataLoader (posi t ion . array ,
viewDirection . array) ;

t e r r a i n−>Update (glViewMatrix . array , posi t ion . array ,
viewDirection . array , frameData . getOcclusionCulling ()) ;

}

67

5 Equalizer Port

Libraries like glew automate this. If multiple GL rendering contexts are used, the speci-
fications say that the function pointers have to be queried for each one because they could
be different depending on the context.

Usually glew ignores this and only queries all function pointers once. Equalizer uses a
special compiler option to make glew support loading the function pointers for each con-
text. Normally the function pointers are stored as global variables; in this mode, though,
a container structure called GLEWContext is used to hold the function pointers. These
two ways of storing the function pointers are incompatible and consequently the renderer
backend has to be changed to support multiple contexts, too.

When glew is compiled to use multiple contexts, it expects a function or macro called
glewGetContext to exist, that returns a pointer to the GLEWContext that should be
used. To avoid keeping such a pointer in every object that uses extension functions, the
renderer backend implements a global function glewGetContext, which in turn refer-
ences a global thread-local-storage variable that stores the context pointer. A thread-local
storage variable exists separately for every thread in the application.

Equalizer uses one thread per pipe and every window in a pipe shares its rendering
context with each other, so one GLEWContext per pipe is sufficient. Listing 5.8 shows the
code that adds support for multiple GLEWContexts.

Listing 5.8: Code to add support for multiple GLEWContexts in the Equalizer version

i f d e f GLEW MX
extern d e c l s p e c (thread) GLEWContext * glewContext ;
i n l i n e GLEWContext * glewGetContext () { re turn glewContext ; }
i n l i n e void glewSetContext (GLEWContext * context) {

glewContext = context ; }
endi f

When rendering into a channel, only Equalizer knows whether OpenGL should render
into the backbuffer or into a framebuffer, so Device::SetBackBufferRenderTarget

has to be changed to let Equalizer decide. Equalizer provides many helper methods in
Channel to accommodate setting the OpenGL state in the right way. Among them are
applyFrameBufferObject, applyBuffer and applyViewport, which can be used
to set up OpenGL for rendering into a channel. Listing 5.9 on the facing page shows Equal-
izer version of the code.

Finally after rendering everything, Effect::ResetState needs to be called to reset
the OpenGL state that has been modified by using effect files. Equalizer can then correctly
continue and use OpenGL itself to perform the tasks of reading back image data and/or
reassembling it. See Listing 5.10 for a shortened version of Channel::frameDraw.

68

5.4 Changes to the Renderer Backend

Listing 5.9: Device::SetBackBufferRenderTarget

void Device : : SetBackBufferRenderTarget () {
i f n d e f EQUALIZER

glBindFramebuffer (GL FRAMEBUFFER, 0) ;
glDisable (GL RASTERIZER DISCARD) ;
checkGLError () ;

e l s e
channel−>applyFrameBufferObject () ;
channel−>applyBuffer () ;
channel−>applyViewport () ;
glDisable (GL RASTERIZER DISCARD) ;
checkGLError () ;

endi f
}

Listing 5.10: Shortened version of Channel::frameDraw

void Channel : : frameDraw (const u i n t 3 2 t frameID) {
// [. . .] v a r i a b l e i n i t i a l i z a t i o n s

glCullFace (GL BACK) ;
glEnable (GL CULL FACE) ;
glFrontFace (GL CW) ;

// [. . .] update data loader and t e r r a i n , see L i s t i n g ??

device−>SetBackBufferRenderTarget () ;

i f (frameData . getSatModify ()) {
t e r r a i n−>SetSaturat ion (frameData . getSaturat ion ()) ;

}

i f (frameData . getWireframe ()) {
ras ter izerSta teWireframe () ;

}
e l s e {

r a s t e r i z e r S t a t e S o l i d () ;
}

69

5 Equalizer Port

i f (frameData . getPageBoundingBoxes ()) {
dataLoader−>Render (t e r r a i n) ;

}

t e r r a i n−>Render (frameData . getBoundingBoxes () ,
frameData . getSatModify ()) ;

Renderer : : E f f e c t : : ResetState () ;

glDisable (GL CULL FACE) ;
}

5.5 Better Equalizer Support

To support multiple windows and pipes a few changes are necessary. All windows of a
pipe share their GL contexts. The data loader and terrain renderer are always bound to one
GPU. This means that all windows of a pipe can share the data loader and terrain renderer.

Moving the initialization and destruction code from Channel to Pipe is a simple refac-
toring step. However there is a problem: when Pipe::configInit is called, the win-
dows of the pipe haven’t been initialized yet and no GL rendering context is available.
Only when Windows::configInitGL and Channel::configInit are called, a con-
text is available. Similarly when Pipe::configExit is called, the rendering contexts
have already been released. Channel::configExit and Pipe::configExitGL are
called before this happens.

The problem is solved by taking advantage of this: initialization is delayed un-
til configInitGL is called for the first window, and destruction is called when
configExitGL is called for the last window. A counter is used to keep track of the
windows that are using the pipe. The counter is incremented in Pipe::delayedInit

and decremented in Pipe::earlyExit. When Pipe::delayedInit is called and the
counter is 0, the initialization code is executed. Likewise when it reaches 0 again in
Pipe::earlyExit, the destruction code is executed. See Listing 5.11 on the facing page.

Another issue is that both the data loader and the terrain update methods are called
in Channel::frameDraw and if there are multiple channels using the same pipe, these
update methods are also called multiple times. Terrain::Update must be called
for each channel, because each channel can have a different different view direction

70

5.5 Better Equalizer Support

Listing 5.11: Delayed init and early exit code

bool Pipe : : delayedInit () {
i f (refCounter++ != 0) {

re turn true ;
}

re turn in i tDevice () && i n i t T e r r a i n () ;
}

void Pipe : : e a r l y E x i t () {
i f (−− refCounter == 0) {

e x i t T e r r a i n () ;
exi tDevice () ;

}
}

and this method selects the tiles that are rendered depending on it. But the calls to
DataLoader::Update can be reduced to one per pipe instead of one per channel.

For this a dataLoaderUpdated flag is added to Pipe and reset each
frame in Pipe::frameStart. Instead of calling DataLoader::Update,
Pipe::updateDataLoader is called, which checks dataLoaderUpdated to make
sure it only updates data loader once per frame.

When multiple channels are used, the data loader chooses the finest level of detail nec-
essary to meet all channel’s requirements for the screen-space error limit. Each channel
passes the relevant parameters to the data loader once per frame. This works well as long
as there is enough memory available to keep all needed pages in memory. Otherwise the
data loader will start to page tiles in and out every frame if different view directions and
level-of-details are used, which kills performance.

The data loader is parameterized by the view direction, the frustum and maximum
screen-space error. Only the view direction determines how pages are prioritized dur-
ing load. The other two parameters are needed to calculate the required level of detail.
The DataLoader::ComputeLoadingRadiuses method computes the different load-
ing radii for each level-of-detail. These loading radii specify inside which circular area
tiles of a certain level-of-detail should be loaded from disk.

To support multiple channels, each channel gets its own set of loading radii, and every
time after one is updated, the one with the highest values, that is, the one that will cache
most tiles, is chosen as the new active set.

71

5 Equalizer Port

With these changes efficient rendering into multiple channels and windows on a single
pipe is possible. Further improvements can be achieved, but this is beyond the scope of
this thesis.

72

6 Conclusion

6.1 Performance Comparison

Figure 6.1: A panorama screenshot from Benchmark B

Table 6.2: Performance Comparison
Benchmark A Benchmark B

D3D 10
(Original) (Wrapped) OGL Equalizer OGL Equalizer

Normal — — 51 fps 36 fps 88 fps 81 fps
Indexed 69 fps 66 fps 70 fps 59 fps 136 fps 118 fps

Table 6.2 shows how the different versions of Terrain3D perform on a map of Utah. A
prerecorded flight is played back in each version and the average fps count is recorded.

Benchmark A uses a map of Utah at a resolution of 8 m for both geometry and textures
and total compressed size of 2.88 GB. The system used is a Core2 Duo 2.0 GHz with 2 GB
RAM, a Geforce 8600M GT and a standard 160GB IDE hard disk. The terrain was rendered
at a resolution of 2560x1024.

Benchmark B uses a map of Utah at a resolution of 5 m for geometry and 1 m for textures.
The total compressed size of the terrain data is 171.5 GB. The system used is a Core 2 Quad

73

6 Conclusion

Q9650 3.00 GHz with 8 GB RAM and two NVIDIA QuadroPlex 2200 D2. It has a 1 TB
SATA hard disk. The terrain was rendered at a resolution of 1280x800.

As you can see, there is small fps drop between the original Direct3D version and the
one that uses the renderer backend. The difference between Direct3D 10 and OpenGL 3.2
is also rather subtle. OpenGL’s API seems to have less call overhead than Direct3D. On
the other hand it is very noticeable that both the pure OpenGL and the Equalizer version
benefit a lot from indexed drawing. Equalizer adds a visible overhead, too. But it is still a
lot better than non-indexed drawing.

6.2 Further Reseach and Development

This thesis can serve as starting point for further research and development. For one, it
only looks at parallelization in Equalizer in a very basic form.

Support for sort-last compounds could be added, and the terrain and data loader could
be adapted to honor this. Another optimization could consist of rewriting the data loader
and terrain code to support multiple GPUs directly. At the moment one data loader has to
be created per pipe, because the data loader does not support uploading data to multiple
GPUs at the same time.

Likewise the terrain renderer could be decomposed to store one page tree per pipe and
keep separate renderer trees for each channel. This would improve support for differently
sized channels, respectively frustums. The current design works best with channels and
frustums that are same size or, to be more precise, need the same level-of-detail because
the maximum needed level-of-detail is used for all tiles when loading them.

It would be interesting to research how to distribute rendering tasks best to let mul-
tiple pipes or nodes render images cooperatively in a way that allows each data loader
instance to load as little unnecessary data as possible from hard-disk. In the best case this
would result in storing different datasets on the different nodes, which would increase the
theoretically possible dataset size by an order of magnitude.

Equalizer also supports dynamic load-balancing across multiple nodes through view
compounds. It would be interesting to experiment with this and different strategies of
prefetching and decompressing data to see how small the response times during load bal-
ancing can become.

Another topic for further research and development could be the GLSL effect compiler.
It could be extended to support more features of OpenGL, eg bigger state blocks or au-
tomatic configuration of texture parameters for passes—similar to sampler blocks in Di-
rect3D’s effect file format. It is also worth evaluating whether a code generator is the best
solution in general or if a binary format and a static library should be preferred. The code
generator approach certainly provides most comfort for the programmer when it comes to

74

6.3 Results

code maintenance, but on the other hand even minor changes to a shader require rebuild-
ing the project.

The development of the GLSL effect compiler has also raised another interesting, even
though not graphics-related, question. StringTemplate is a powerful library and the tem-
plates can be used in many ways, but the fact is, that it is not a real programming language,
and you reach its limitations quickly. It might be interesting to examine, for example, how
PHP could be used for code generation or the tasks StringTemplate is used for in general,
or how regular programming languages could be extended to facilitate string output by
adding additional text operators.

6.3 Results

This thesis describes the differences between Direct3D and OpenGL in detail. It explains
all the steps necessary to port a complex application from Direct3D to OpenGL and points
out where the common pitfalls lie.

The wrapper it presents is well tested and mature. It supports most of the common
features of the two APIs and some special ones as well. Moreover, it can easily be extended
to support more features and formats, and can be used to port other applications, too.

A simple yet powerful GLSL effect file format has been designed from the ground up,
along with a compiler that converts it into C++ code. The effect file format is easily exten-
sible and the compiler makes use of high-level libraries for parsing and code generation,
which guarantees maintainability. Considering that there is no other simple GLSL effect
file format available at the moment, this file format could well be developed further and
released to the public as helper library similar to glew or GLUT.

This work also examines how to develop applications for Equalizer and presents the
steps necessary from a result-oriented point of view. It uses this approach to port Terrain3D
to Equalizer and explains how to embed the application logic in Equalizer’s structures. The
last part of the thesis talks about Equalizer-specific optimizations to increase efficiency and
to support more of Equalizer’s features.

Most importantly, this thesis has resulted in a version of Terrain3D that can run on mul-
tiple GPUs in parallel and on multiple clients in a cluster. It is capable to drive a CAVE
system like the one the research labs at KAUST have got.

75

Bibliography

[AMHH08] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering
3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[ANT] ANTLR - What is the intended behavior of the lexer? Avail-
able from: http://www.antlr.org/wiki/pages/viewpage.action?

pageId=4882470 [cited October 8, 2009].

[BSK+07] Kai Bürger, Jens Schneider, Polina Kondratieva, Jens Krüger, and Rüdiger
Westermann. Interactive visual exploration of instationary 3D-flows. In Euro-
graphics/IEEE VGTC Symposium on Visualization (EuroVis), to appear, 2007.

[BSW+07] OpenGL Architecture Review Board, Dave Shreiner, Mason Woo, Jackie Nei-
der, and Tom Davis. OpenGL(R) Programming Guide: The Official Guide to Learn-
ing OpenGL(R), Version 2.1, 6th Edition. Addison-Wesley Professional, 2007.

[DKW09] Christian Dick, Jens Krüger, and Rüdiger Westermann. GPU ray-casting for
scalable terrain rendering. In Proceedings of Eurographics 2009 - Areas Papers,
pages 43–50, 2009.

[DSA] Ext direct state access. Technical report. Available from: http://www.

opengl.org/registry/specs/EXT/direct_state_access.txt

[cited October 15, 2009].

[DSW09] Christian Dick, Jens Schneider, and Rüdiger Westermann. Efficient geometry
compression for GPU-based decoding in realtime terrain rendering. Computer
Graphics Forum, 28(1):67–83, 2009.

[Eil] Stefan Eilemann. Configuration file format [online]. Available from:
http://www.equalizergraphics.com/documents/design/

fileFormat.html [cited October 9, 2009].

[EQh] Equalizer: Parallel rendering [online]. Available from: http://www.

equalizergraphics.com/.

77

http://www.antlr.org/wiki/pages/viewpage.action?pageId=4882470
http://www.antlr.org/wiki/pages/viewpage.action?pageId=4882470
http://www.opengl.org/registry/specs/EXT/direct_state_access.txt
http://www.opengl.org/registry/specs/EXT/direct_state_access.txt
http://www.equalizergraphics.com/documents/design/fileFormat.html
http://www.equalizergraphics.com/documents/design/fileFormat.html
http://www.equalizergraphics.com/
http://www.equalizergraphics.com/

Bibliography

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[Gmb] Eyescale Software GmbH. Equalizer Programming and User Guide.
Available from: http://www.equalizergraphics.com/downloads/

DBCAAF49A0C0/ProgrammingGuide.pdf [cited October 9, 2009].

[Kra09] Martin Kraus. The pull-push algorithm revisited. In Proceedings GRAPP 2009,
2009.

[McC04] Steve McConnell. Code Complete, Second Edition. Microsoft Press, Redmond,
WA, USA, 2004.

[MSD] Microsoft Developer Network Online Documentation. Available from: http://
msdn.microsoft.com.

[Para] Terence Parr. Antlr parser generator [online]. Available from: http://www.
antlr.org.

[Parb] Terence Parr. Stringtemplate template engine [online]. Available from: http:
//www.stringtemplate.org/.

[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. Pragmatic Programmers. Pragmatic Bookshelf, first edition, May 2007.

[SA09] Mark Segal and Kurt Akeley. The OpenGL graphics system: A specification
(version 3.2 (core profile) - july 24, 2009). Technical report, Khronos Group
Inc., July 2009. Available from: http://www.opengl.org/registry/

doc/glspec32.core.20090803.pdf.

[SBW06] Jens Schneider, Tobias Boldte, and Ruediger Westermann. Real-time editing,
synthesis, and rendering of infinite landscapes on GPUs. In Vision, Modeling
and Visualization 2006, 2006.

[SW06] Jens Schneider and Rüdiger Westermann. GPU-friendly high-quality terrain
rendering. Journal of WSCG, 14(1-3):49–56, 2006.

[WLH07] Richard Wright, Benjamin Lipchak, and Nicholas Haemel. OpenGL® Super-
Bible: Comprehensive Tutorial and Reference, Fourth Edition. Addison-Wesley
Professional, 2007.

78

http://www.equalizergraphics.com/downloads/DBCAAF49A0C0/ProgrammingGuide.pdf
http://www.equalizergraphics.com/downloads/DBCAAF49A0C0/ProgrammingGuide.pdf
http://msdn.microsoft.com
http://msdn.microsoft.com
http://www.antlr.org
http://www.antlr.org
http://www.stringtemplate.org/
http://www.stringtemplate.org/
http://www.opengl.org/registry/doc/glspec32.core.20090803.pdf
http://www.opengl.org/registry/doc/glspec32.core.20090803.pdf

	Acknowledgements
	Abstract
	Zusammenfassung
	Table of Contents
	Introduction
	Direct3D 10 and OpenGL 3.2
	A Short History of OpenGL
	A Short History of DirectX and Direct3D
	Graphics Pipeline
	Direct3D 10 API
	Device Object
	State Objects
	Resource Objects
	Texture View Objects
	Shader Objects
	Effect Files

	OpenGL 3.2 API
	Object Model
	Direct State Access Extension

	Notable Differences between OpenGL and Direct3D
	Indexed and Bufferless Drawing

	Terrain3D Overview
	Architecture
	Resource Pool
	Data Loader
	Renderer
	Application

	Texture Compression
	Coupling between Terrain3D and DirectX/Direct3D

	OpenGL Port
	Overview
	Goals
	Concept
	Renderer Backend
	Effect Files

	Effect Class and Helper Classes
	Effect Files
	GLSL Effect File Format
	ANTLR Grammar Definition
	Compiler Code
	StringTemplate Code

	Device Class and Helper Classes
	Class Hierarchy
	Device Methods

	Additional Changes in Terrain3D
	Coordinate System
	Indexed and Bufferless Drawing
	GLUT Library

	Equalizer Port
	The Equalizer Framework
	Rendering Modes
	Load Balancers
	Configuration Files
	API Overview

	Overview of the Porting Process
	Equalizer Application Code
	eqPly's Equalizer Classes
	Porting the Application Code

	Changes to the Renderer Backend
	Better Equalizer Support

	Conclusion
	Performance Comparison
	Further Reseach and Development
	Results

	Bibliography

